
Riffle: Optimized Shuffle Service for
Large-Scale Data Analytics

Haoyu Zhang
Brian Cho
Ergin Seyfe
Avery Ching
Michael J. Freedman

Princeton University Facebook

Batch analytics systems are widely used

• Large-scale SQL queries
• Custom batch jobs
• Pre-/Post-processing for ML

At

10s of PB new data is generated
every day for batch processing

100s of TB data is added to be
processed by a single job

2

Batch analytics jobs: logical graph

map filter

map

join,
groupBy filter

narrow dependency wide dependency

3

Batch analytics jobs: DAG execution plan

Stage 1 Stage 2

• Shuffle: all-to-all communication between stages
• >10x larger than available memory, strong fault tolerance requirements

→ on-disk shuffle files
4

The case for tiny tasks

• Benefits of slicing jobs into small tasks
• Improve parallelism [Tinytasks HotOS 13] [Subsampling IC2E 14] [Monotask SOSP 17]

• Improve load balancing [Sparrow SOSP 13]

• Reduce straggler effect [Dolly NSDI 13] [SparkPerf NSDI 15]

5

The case against tiny tasks

• Engineering experience often argues against running too many tasks
• Medium scale → very large scale (10x larger than memory space)
• Single-stage jobs → multi-stage jobs (> 50%)

Although we were able to run the Spark job with such a high
number of tasks, we found that there is significant performance

degradation when the number of tasks is too high.

[*] Apache Spark @Scale: A 60 TB+ Production Use Case. https://tinyurl.com/yadx29gl

6

https://tinyurl.com/yadx29gl

Shuffle I/O grows quadratically with data

0 5000 10000
1umber RI TasNs

0

1000

2000

3000

4000

S
hu

IIO
e

Ti
m

e
(s

ec
)

ShuIIOe Time

0

40

80

120

5
eT

ue
st

 C
Ru

nt
 /
10

6

I/2 5eTuest

0 5000 10000
1umber of TasNs

0

500

1000

1500

S
iz

e
(K

B
)

SKuffle)etFK Size

• Large amount of fragmented I/O requests
• Adversarial workload for hard drives!

7

Strawman: tune number of tasks in a job

• Tasks spill intermediate data to disk if data splits exceed memory capacity
• Larger task execution reduces shuffle I/O, but increases spill I/O

8

Strawman: tune number of tasks in a job

• Need to retune when input data volume changes for each individual job
• Bulky tasks can be detrimental [Dolly NSDI 13] [SparkPerf NSDI 15] [Monotask SOSP 17]

• straggler problems, imbalanced workload, garbage collection overhead

300 400 500 600 700 800 900
1000

2000
4000

8000
10000

1umber of 0aS 7asNs

0

1000

2000

3000

7i
m

e
(s

ec
)

6huffle 6Sill

300 400 500 600 700 800 900
1000

2000
4000

8000
10000

1umber of 0aS 7asNs

0

1000

2000

3000

7i
m

e
(s

ec
)

6huffle 6Sill

300 400 500 600 700 800 900
1000

2000
4000

8000
10000

1umber of 0aS 7asNs

0

1000

2000

3000

7i
m

e
(s

ec
)

6huffle 6Sill

9

10

Small Tasks

Bulky Tasks

Large Amount of
Fragmented Shuffle I/O

Fewer, Sequential
Shuffle I/O

Riffle: optimized shuffle service

• Riffle shuffle service: a long running instance on each physical node
• Riffle scheduler: keeps track of shuffle files and issues merge requests

Worker NodeWorker NodeTaskTaskTasks Worker Machine

Task Task Task Task

File System

ExecutorExecutor

Riffle Shuffle Service

Driver

Job / Task
Scheduler

Riffle
Merge

Scheduler

assign

report task
statuses

report merge
statuses

send merge
requests

11

Riffle: optimized shuffle service

• When receiving a merge request

1. Combines small shuffle files into
larger ones

2. Keeps original file layout

• Reducers fetch fewer, large blocks
instead of many, small blocks

Optimized Shuffle Service

merge
request

map

map

map

reduce

reduce

reduce

reduce

reduce

reduce

reduce

map

map

map

merge
request

Application Driver
Merge Scheduler

Worker-Side Merger

12

1R 0erge 5 10 20 40
1-Way 0erge

0

100

200

300

400

500

Ti
m

e
(s

ec
)

0aS SWage 5educe SWage

Results with merge operations on synthetic workload

• Riffle reduces number of fetch requests by 10x
• Reduce stage -393s, map stage +169s → job completes 35% faster

1R 0erge 5 10 20 40
1-Way 0erge

0

1500

3000

4500

6000

6i
ze

 (K
B)

5ead BlRcN 6ize

0

2000

4000

6000

8000

5
eq

ue
sW

 C
Ru

nW

1umber Rf 5eads

13

1R 0erge 5 10 20 40
1-Way 0erge

0

1500

3000

4500

6000

6i
ze

 (K
B)

5ead BlRcN 6ize

0

2000

4000

6000

8000

5
eq

ue
sW

 C
Ru

nW

1umber Rf 5eads

1R 0erge 5 10 20 40
1-Way 0erge

0

1500

3000

4500

6000

6i
ze

 (K
B)

5ead BlRcN 6ize

0

2000

4000

6000

8000

5
eq

ue
sW

 C
Ru

nW

1umber Rf 5eads

1R 0erge 5 10 20 40
1-Way 0erge

0

100

200

300

400

500

Ti
m

e
(s

ec
)

0aS SWage 5educe SWage

Best-effort merge: mixing merged and unmerged files

• Reduce stage -393s, map stage +52s → job completes 53% faster
• Riffle finishes job with only ~50% of cluster resources!

1R 0erge 5 10 20 40
1-Way 0erge

0

100

200

300

400

500

Ti
m

e
(s

ec
)

0aS SWage 5educe SWage

14

Best-effort merge (95%)

Additional enhancements

• Handling merge operation failures
• Efficient memory management
• Balance merge requests in clusters

Block 65
Block 66

…
Block 67

…
Block 65
Block 66

…
Block 67

…
Block 65
Block 66

…
Block 67

…

…

Block 65-1
Block 65-2

Block 65-m
…

Block 66-1
Block 66-2

Block 66-m
…

B
uf

fe
re

d
R

ea
d

B
uffered W

rite

Merge

1

k

Merger

Merger

Merger

Merger

Merger

…

Job 1 Driver

Job 2 Driver

…

Job k Driver

request 1

request k

15

Experiment setup

• Testbed: Spark on a 100-node cluster
• 56 CPU cores, 256GB RAM, 10Gbps Ethernet links
• Each node runs 14 executors, each with 4 cores, 14GB RAM

• Workload: 4 representative production jobs at Facebook

Correctness with compressed and sorted data.
Compression is commonly used to reduce I/O overhead
when storing files on disks. The data typically needs
to go through compression codecs when transforming
between its on-disk format and in-memory representa-
tion. Riffle concatenates file blocks directly in their
compressed, on-disk format to avoid compression en-
coding and decoding overhead. This is possible be-
cause the data analytics frameworks typically use con-
catenation friendly compression algorithms. For exam-
ple, LZ4 [41] and Snappy [42] are commonly used in
Spark and Hadoop for intermediate and result files.

Merging the raw block files breaks the relative order-
ing of the key-value items in the blocks of merged shuffle
files. If a reduce task does require the data to be sorted, it
cannot assume the data on the mapper side is pre-sorted.
Sorting in Spark (default) and Hadoop (configurable) on
reduce side uses the TimSort algorithm [43], which takes
advantage of the ordering of local sub-blocks (i.e., seg-
ments of the concatenated blocks in merged shuffle files)
and efficiently sorts them. The algorithm has the same
computational complexity as Merge Sort and in practice
leads to very good performance [44]. The sorting mech-
anism ensures that reducer tasks will get the correctly
ordered data even with the Riffle merge operations. In
addition, since merge will not affect the internal ordering
of data in sub-blocks, the sorting time with Riffle will be
the same as the no merge case.

5 Implementation

We implemented Riffle with about 4,000 lines of Scala
code added to Apache Spark 2.0. Riffle’s modification
is completely transparent to the high-level programming
APIs, so it supports running unmodified Spark applica-
tions. We implemented Riffle to work on both traditional
clusters with collocated computation and storage, and the
new-generation disaggregated clusters. Riffle as well as
its policies and configurations can be easily changed on
a per-job basis. It is deployed and running various Spark
batch analytics jobs at OSN.
Garbage collection. Storage space, compared to other
resources, is much cheaper in the system. As described
in §4.3, Riffle keeps both unmerged and merged shuffle
output files on disks for better fault tolerance. Both types
of shuffle output files share the lifetime of the running
Spark job, and are cleaned up by the resource manager
when the job ends.

6 Evaluation

In this section, we present evaluation results on Riffle.
We demonstrate that Riffle significantly improves the I/O

Data Map Reduce Block Description

1 167.6 GB 915 200 983 K ad metrics
2 1.15 TB 7,040 1,438 120 K measurement
3 2.7 TB 8,064 2,500 147 K measurement
4 267 TB 36,145 20,011 360 K ad metrics

Table 1: Workload and datasets for 4 production jobs used
for Riffle evaluation. Each row shows the total size of shuf-
fle data in a job, the number of tasks in its map and reduce
stages, and the average size of shuffle blocks.

efficiency by increasing the request sizes and reduces
the IOPS requirement on the disks, and scales to pro-
cess 100s of TB of data and reduces the end-to-end job
completion time and total resource usage.

6.1 Methodology

Testbed. We test Riffle with Spark on a disaggregated
cluster (see §4.4). The computation blade of the cluster
consists of 100 physical nodes, each with 56 CPU cores,
256GB RAM (with 200GB allocated to Spark execu-
tors), and connected with 10Gbps Ethernet links. Each
physical node is further divided into 14 executors, each
with 4 CPU cores and 14 GB memory. In total, the jobs
run on 1,414 executors. 8GB memory on each physi-
cal node is reserved for in-memory buffering of the Rif-
fle merger instance. The storage blade provides a dis-
tributed file system interface, with 100MB/s I/O speed
for sequential access of a single file. Our current deploy-
ment of file system supports 512KB unit I/O operation.
We also use emulated IOPS counters in the file system to
show the performance benefit when the storage is tuned
with larger optimal I/O sizes.
Workloads and datasets. We used four production
jobs at OSN with different sizes of shuffle data, rep-
resenting small, medium and large scale data process-
ing jobs, as shown in Table 1. To isolate the I/O be-
havior of Riffle, in §6.2 we first show the experiment
results on synthetic workload closely simulating Job 3:
the synthetic job generates 3TB random shuffle data and
uses 8,000 map tasks and 2,500 reduce tasks. With
vanilla Spark, each shuffle output file, on average, has
a 3TB/8000/2500 = 150KB block for each reduce task
(approximating the 147KB block size in Job 3). With-
out complex processing logic, experiments with the syn-
thetic job can demonstrate the I/O performance improve-
ment with Riffle. We further show the end-to-end perfor-
mance with the four production jobs in §6.3.
Metrics. Shuffle performance is directly reflected in
the reduce task time, since each reduce task needs to first
collect all the blocks of a certain partition from shuffle
files, before it can start performing any operations. To
show the performance improvement of Riffle, we focus
on measuring (i) task, stage, and job completion time,

9

16

Reduction in shuffle I/O requests

• Riffle reduces # of I/O requests by 5--10x for medium / large scale jobs

JRb1 JRb2 JRb30

5

10

15

20

6
Ku

IIO
e

I2
 5

eq
ue

st
s

/ 1
06

1R 0erJe 512K 10 20 40

JRb4 0

200

400

600

800

17

Savings in end-to-end job completion time

• Map stage time is almost not affected (with best-effort merge)
• Reduces job completion time by 20--40% for medium / large jobs

JoE1 JoE2 JoE30

50

100

To
tD

l T
Ds

N
E

xe
cu

tio
n

Ti
m

e
/ D

Dy
s

1o 0erJe 512K 10 20 40

JoE4 0

400

800

1200

18

Ti
m

e
/ C

PU
 D

ay
s

Conclusion

• Shuffle I/O becomes scaling bottleneck for multi-stage jobs

• Efficiently schedule merge operations, mitigate merge stragglers

• Riffle is deployed for Facebook’s production jobs processing PBs of data
19

merge
request

JoE1 JoE2 JoE30

50

100

To
tD

l T
Ds

N
E

xe
cu

tio
n

Ti
m

e
/ D

Dy
s

1o 0erJe 512K 10 20 40

JoE4 0

400

800

1200

Thanks!

Haoyu Zhang
haoyuz@cs.princeton.edu
http://www.haoyuzhang.org

Riffle merge policies

Block 1
Block 2

Block R
…

Block 1
Block 2

Block R
…

Block 1
Block 2

Block R
…

…

Block 1

Block 2

Block R

…

N files

Block 1
Block 2

Block R
…

Block 1
Block 2

Block R
…

Block 1
Block 2

Block R

…

…

Block 1

Block 2

Block R

…

total average block size
> merge threshold

21

Best-effort merge

• Observation: slowdown in map stage is mostly due to stragglers

• Best-effort merge: mixing merged and unmerged shuffle files
• When number of finished merge requests is larger than a user

specified percentage threshold, stop waiting for more merge results

22

Thread 1

Thread 2

Thread 3
Merger

time

