Popularity Prediction of Facebook Videos for Higher Quality Streaming

Linpeng Tang*

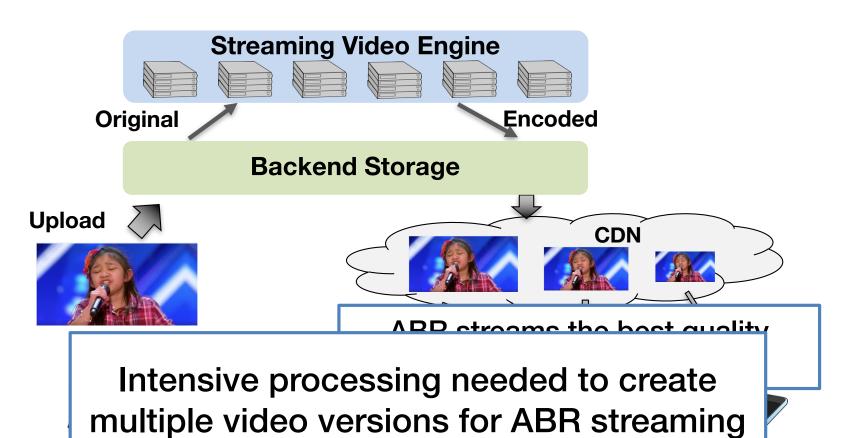
Qi Huang^b, Amit Puntambekar^b Ymir Vigfusson[†], Wyatt Lloyd[‡], Kai Li *

Videos are Central to Facebook 8 billion views per day

9-year old singing on America's Got Talent 44M views Black bear roaming in Princeton 3.8K views

Small shop making frozen yogurt 122 views

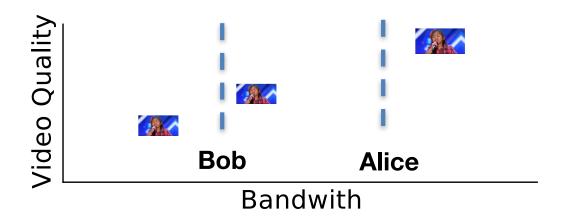
Workflow of Videos on Facebook



Better Video Streaming from More Processing

- Better compression at the same quality
- QuickFire: 20% size reduction using 20X computation

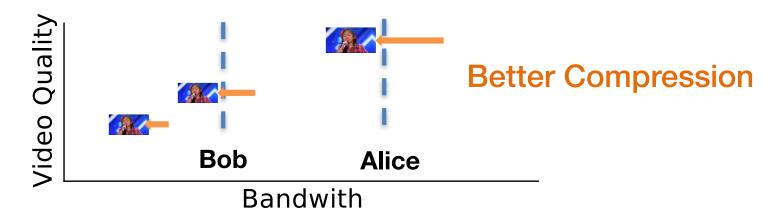
More users can view the high quality versions



Better Video Streaming from More Processing

- Better compression at the same quality
- QuickFire: 20% size reduction using 20X computation

More users can view the high quality versions



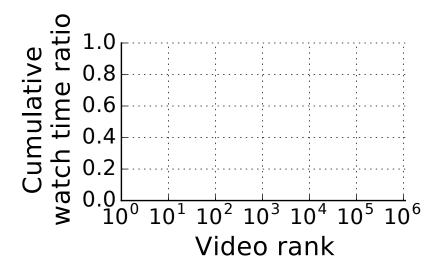
How to apply QuickFire for FB videos

- Infeasible to encode all videos with QuickFire
 - Increase by 20X the already large processing fleet

- High skew in popularity
 - Reap most benefit with modest processing?

Opportunity: High Skew in Popularity

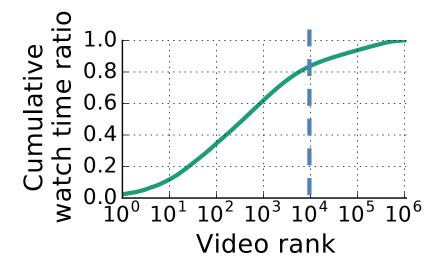
- Access logs of 1 million videos randomly sampled by ID
- Watch time: total time users spent watching a video



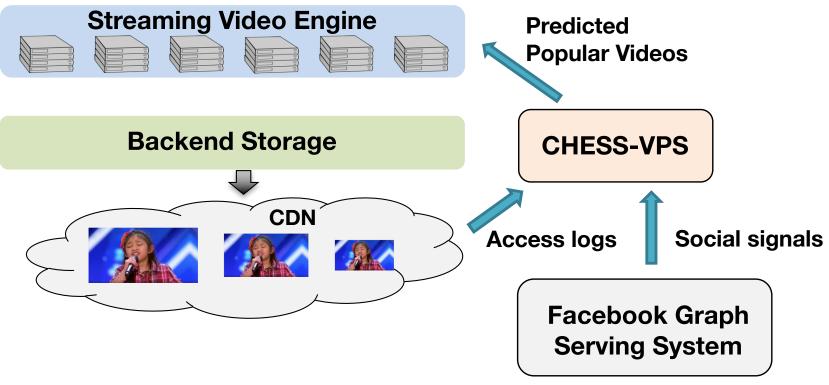
Opportunity: High Skew in Popularity

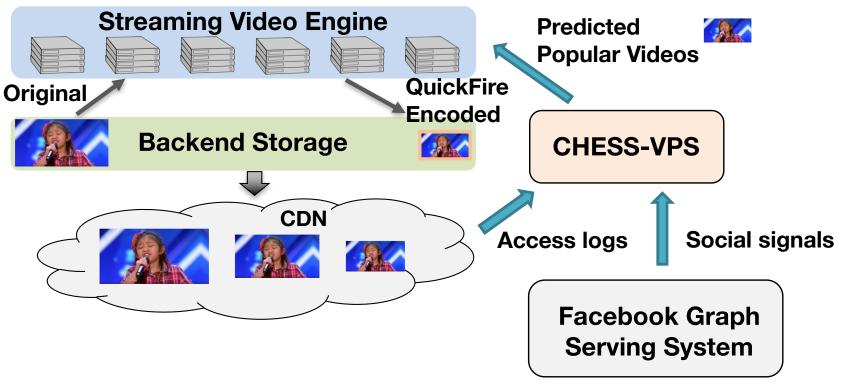
- We can serve most watch time even with a small fraction of videos encoded with QuickFire
- Can we predict these videos for more processing?

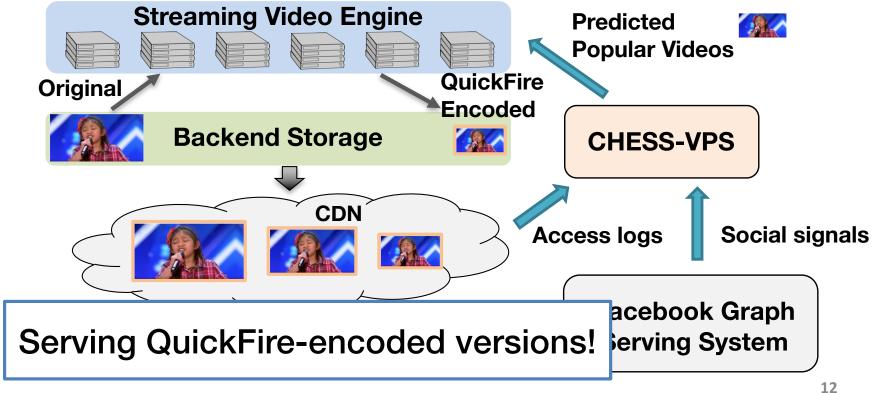
80%+ watch time



- Popularity prediction is important for higher quality streaming
 - Direct encoding on videos with the largest benefit
- Goal of CHESS video prediction system
 - -Identify videos with highest future watch time
 - Maximize watch-time ratio with budgeted processing







Requirements of CHESS-VPS

- Handle working set of ~80 million videos
- Generate new predictions every few minutes

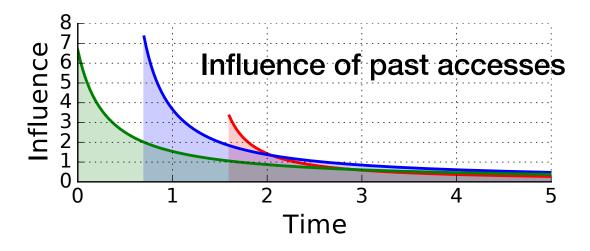
Requires a new prediction algorithm: CHESS!

CHESS Key Insights

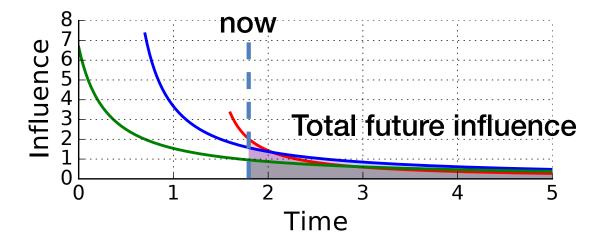
 Efficiently model influence of past accesses as the basis for scalable prediction

Combine multiple predictors to boost accuracy

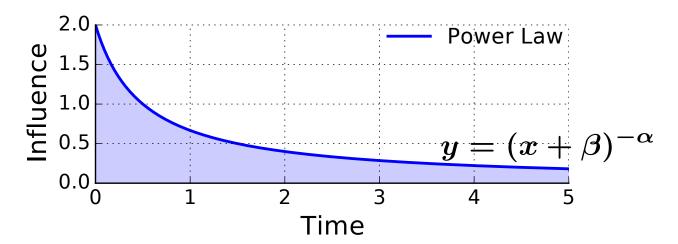
- Self exciting process
 - A past access makes future accesses more probable, i.e. provides some *influence* on future popularity



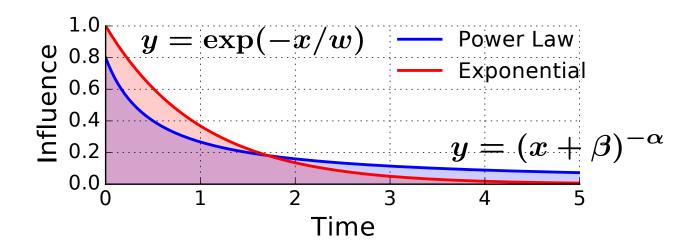
- Self exciting process
 - A past access makes future accesses more probable, i.e. provides some *influence* on future popularity
 - Prediction: sum up total future influence of all past accesses



- Influence modeled with kernel function
- Power-law kernel used by prior works
 - Provides high accuracy
 - Scan all past accesses, O(N) time/space not scalable



- Influence modeled with kernel function
- Power-law kernel used by prior works
- Key insight: use exponential kernel for scalability



Self exciting process with the exponential kernel

$$ilde{F}(t) = rac{x}{w} + \exp\left(rac{-(t-u)}{w}
ight) ilde{F}(u)$$

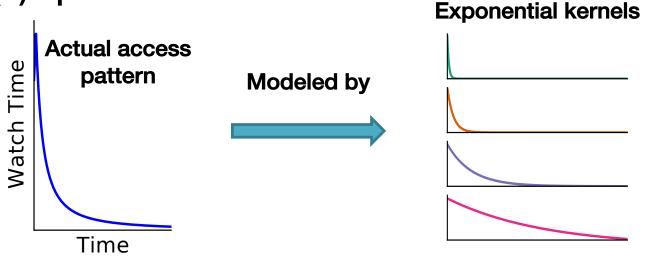
- Single exponential kernel is less accurate than power-law kernel
 - -10% lower watch time ratio
- O(1) space/time to maintain

Single exponential kernel is less accurate yet scalable

Combining Efficient Features in a Model

Key insight: maintain multiple exponential kernels

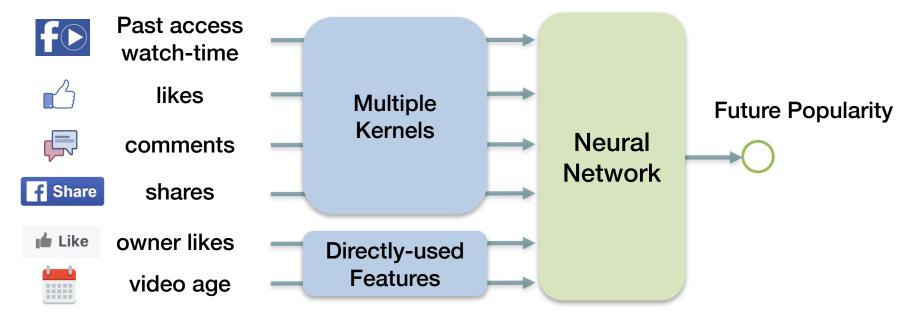
O(1) space/time



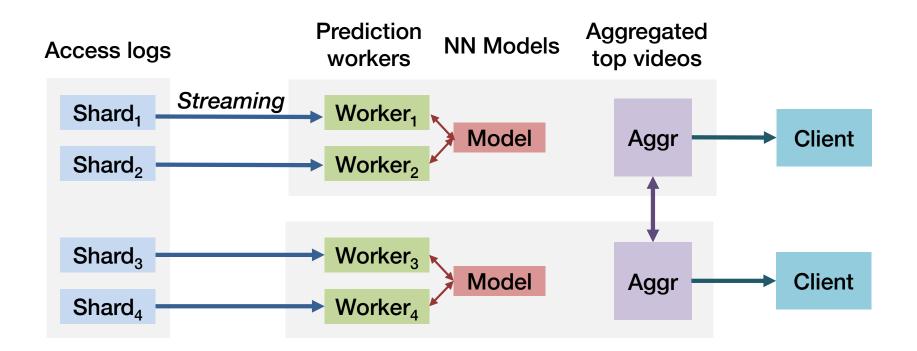
Combining multiple exponential kernels is as accurate as a power-law kernel

Combining Efficient Features in a Model

Raw features



Social signals further boosts accuracy



Evaluation

- What is the accuracy of CHESS?
- How do our design decisions on CHESS affect its accuracy and resource consumption?
- What is CHESS's impact on video processing and watch time ratio of QuickFire?

Evaluation

- What is the accuracy of CHESS?
- How do our design decisions on CHESS affect its accuracy and resource consumption?
- What is CHESS's impact on video processing and watch time ratio of QuickFire?

Metrics

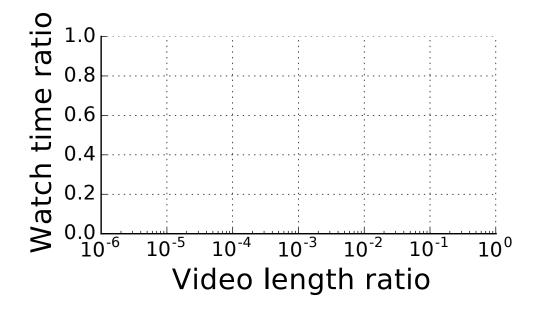
- Watch time ratio
 - Ratio of watch time from better encoded videos
 - Directly proportional to benefits of better encoding
- Processing time

Metrics

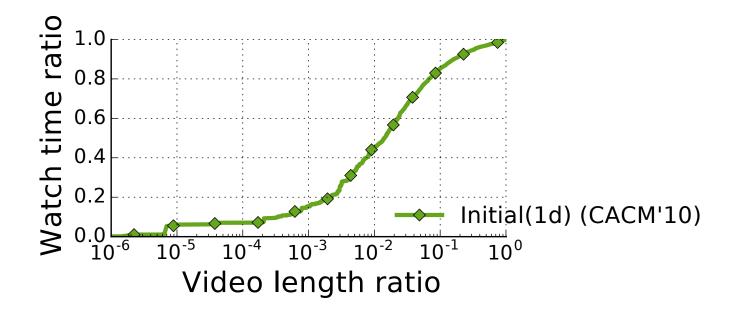
- Watch time ratio
 - Ratio of watch time from better encoded videos
 - Directly proportional to benefits of better encoding
- Processing time (infeasible to encode all videos)

 - Video length ratio ≈ computation overhead

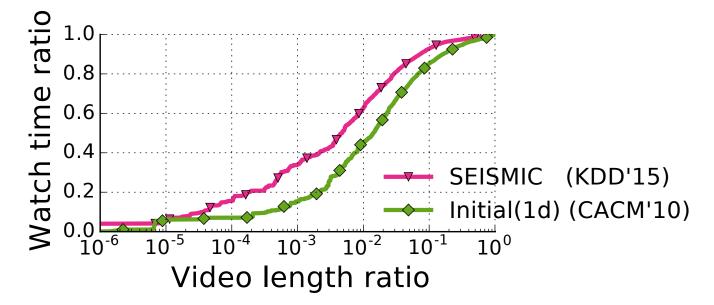
- Vary video length ratio (proxy for processing overhead)
- Observe watch time ratio of better encoded videos



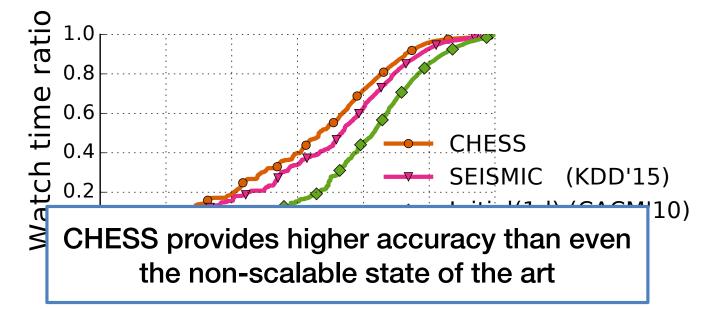
• Initial(1d): initial watch time up to 1 day after upload



- Initial(1d): initial watch time up to 1 day after upload
- SESIMIC: handcrafted power-law kernel

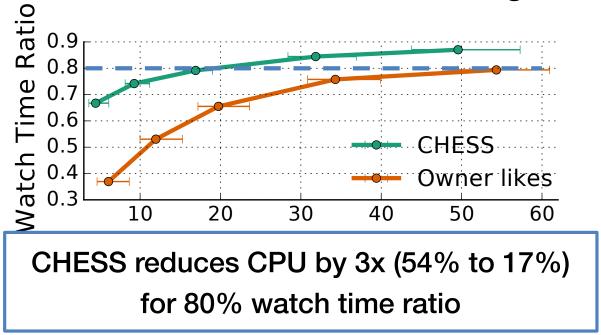


- Initial(1d): initial watch time up to 1 day after upload
- SESIMIC: handcrafted power-law kernel



CHESS Reduces Encoding Processing

- Predict on whole Facebook video workload in real-time
- Sample 0.5% videos for actual encoding



Related Work

Popularity Prediction

Hawkes'71, Crane'08, Szabo'10, Cheng'14, SEISMIC'15

CHESS is scalable and accurate

Video QoE Optimization

Liu'12, Aaron'15, Huang'15, Jiang'16, QuickFire'16

Optimize encoding with access feedback

Caching

LFU'93, LRU'94, SLRU'94, GDS'97, GDSF'98, MQ'01

Identify hot items to improve efficiency

Conclusion

- Popularity prediction can direct encoding for higher quality streaming
- CHESS: first scalable and accurate popularity predictor
 - Model influence of past accesses with O(1) time/space
 - Combine multiple kernels & social signals to boost accuracy
- Evaluation on Facebook video workload
 - More accurate than non-scalable state of the art method
 - Serve 80% user watch time with 3x reduction in processing