CONIKS

BRINGING KEY TRANSPARENCY
TO END USERS

Marcela Melara

Aaron Blankstein, Joseph Bonneau®*, Edward W. Felten, Michael J. Freedman

Princeton University, *Stanford University/EFF

-
E2E Encrypted Communication Today

- Users’ growing demand for E2E secure communication

- Known problem: Key management is difficult for users

e
Unsolved: How do users establish trust?

- Trust establishment = Learn & verify the other party’s key

- Goal: Establish secure communication channel

Out-of-Band Trust Est. = Unintuitive

Bob, is
DEF123 your
public key?

Alice, what’s
a public key?

Alice Bob

Requires users to reason about encryption/keys = unintuitive, error-prone!

-
Trust Est. by the Provider — Better?

- Clients query provider for others’ keys
- Users don’t worry about or see keys

- Caveat: Users must trust provider unconditionally

Malicious Provider can Equivocate

Secure
Messaging
Provider
Register alice’s This isn’t alice’s
’ |
(alice > PK,) key: PK’,, real key!
l ——————— \I ——————— \l
! Client 1 Client 1
A S LB ;
Alice Bob

Equivocation = Presenting diverging views to different clients.

-
Pros/Cons of Existing Trust Establishment

Users verify keys Providers establish trust
out of band for users
Security V4) 4
Usability) 4 v

Challenge: How can we get the best of both worlds?

-
|deal Trust Establishment Properties

1. Security against equivocation attacks

2. Automation: Users don’t worry about trust establishment

-
Existing Approach: Verifying Correctness

- Correctness = Expected real-world person controls online name-
to-public key binding

- Problem: Requires out-of-band communication

-
Our Approach: Verifying Consistency

- Consistency =

1. Alice’s key today = Alice’s key yesterday
2. Alice’s key seen by Alice = Alice’s key seen by everyone else

- Benefit: Can be enforced via crypto

—> Providers manage consistent keys - Automation

e
Solution; CONIKS

- Automated trust establishment with untrusted providers
- Clients verify consistency of bindings

- Goal: Make provider equivocation easily detectable

-
CONIKS — Registering a Key

Identity Provider
Register

(alice 2 PK,)

- ———— - ———— -

-
CONIKS - Learning a User’s Key

ldentity Provider Public key for
alice: PK,
Verify
consistency
of PK,
T 3
! Client !
A
TR/
Alice Bob

Encrypt msg using PK,

Strawman Consistency Checks: Verify All Bindings

Identity Provider

Unexpected Changes Checks
O(N) storage per client

l ------- \l l ——————— \I {ﬁ ------ \I
I Client 1 I Client 1 I Client 1 Client
: e : | emonoee- > -4
i A 1 I C i I B 1 D
_______ Y4 ____ I 4 —~ o e e mn?
‘..g::_ ;i‘.::--_-________-zzz—‘—"‘- Le®
S ItmweerzIIl o mmmmmEEET

-

ey

i ——
---——————-—__-——————_—-_-———_——————

Consistent View Checks
O(N?2) downloads per client

CONIKS: Efficient Checks thru “Summaries’

root, |

- Providers generate directory “summaries wr

—> Clients don't verify all bindings

.]] _ H(child,)||H(child,) H(child,)|[H(child,)
- Bindings stored in Merkle prefix trees

= Tree root = Summary of all bindings — e — [oS]
- Tamper-evident directory [] [] [binding]

binding binding binding

- Non-repudiation: Signed tree root (STR)

- Undeniable statement about tree contents

-
CONIKS — Main Security Properties

1. No Unexpected Key Changes: Expected Bindings
included in Signed tree root

2. Non-equivocation = All clients see the same STR

1. Expected Bindings incl. in STR — Auth Paths

- Why? Evidence for fake keys

root,

p
\H(child,)

- How? Authentication path = proof of inclusion

- Pruned Merkle tree from binding to root

(e v
- Verification: recomputed root = STR P

- O(log n) for tree with n bindings
alice’s

1. Checking Inclusion — Verify Auth Path

(Identity Provider

Important: Clients also regularly
monitor their own user’s binding.

+ | Signed
Tree Root
Lookup PK
(CTTTTTTTY for alice ,
ia I Client : ia
1 A 1
o a ;

Compare PKA to previous version,
: Bob
Alice verify auth path,

Verify STR signature

2. Non-Equivocation — STR History

0 St-l St

root

- Why? Detect provider attempt to MITM Hichid(chiid,)

- How? Building verifiable STR history [H«hﬂdo)!wch"dnl lH(chﬂd&!wch“doi

- Hash chain - commitment to all STRs e 61025 [2005 [y i) (1 o'
binding binding binding binding

- Verification: previous STR is incl. in next STR

2. Non-Equivocation — Clients see same STRs

- Checking hash chain not enough:

St-l St _______
. l‘ . \I
Sig(Se.1) ! Client 1
¥ . A
So b‘d -------- /
Sig(So)
H(seed) ________ .

————————

-
2. Checking Non-Equivocation — Cross-Verification

(1) Verify hash chain (1)Verify hash chain
S, S
o (g o
Identity Provider leentlty ProwderJ Identity Provider

St
S [sies)]
|_Sig(s) | H(S oot
H(S Hlroot;

@Verify hash chain
@Compare different views

Bob

-
Privacy Challenges in CONIKS

1. Don’t want to publish list of usernames

2. Don’t want to publish PKs associated with names
3. Don’t want to expose total # of users

- Addressed through practical crypto tricks!

Main Performance Questions

- Does our server design scale to the size of a typical user base
(thousands — billions)?

- Are CONIKS consistency checks efficient enough to run on
today’s mobile devices?

- Does CONIKS integrate well with existing E2E services?

e
CONIKS' Performance is Practical!

- Server scales to tens of millions of users on single machine
Inserting 1K new bindings into 10M-user tree: 2.6ms

- Client consistency checks need little bandwidth/storage
Max. bandwidth requirements < 20kB per day

Proof of concept: Integration with Pidgin OTR plug-in

Conclusion

- Main idea: Users should not have to manage keys, but service
providers should not be trusted either.

- CONIKS: Security through consistency = more practical

- Yahoo & Google adopting CONIKS in their E2E systems

——
Q&A

More Info:
Website: www.coniks.org
Ref. Implementation: github.com/coniks-sys

We thank:

Yan Zhu (Yahoo)

Gary Belvin (Google)
Trevor Perrin (TextSecure)
David Gil (formerly Yahoo)

