RIPQ: Advanced Photo Caching
on Flash for Facebook

Linpeng Tang (Princeton)
Qi Huang (Cornell & Facebook)
Wyatt Lloyd (USC & Facebook)

Sanjeev Kumar (Facebook)

Kai Li (Princeton)

& UNIVERSITY

ﬁ facebook.
USC 1

2 Billion” Photos
Shared Dally

Photo Serving Stack

QSN
SQEEEES

N KZuckerberg @

About Friends Photos

send him a mes:

Founder and CEO at Facebook . MaflPuckerberg

‘Studied Computer Science at Harvard

Uity Today Prisflla and | are announcing & §75 million contrdution to
an Francsco General Hospital.

Lives in Palo Al Califoma W belleve everyone deserves access to high qualty health care. The

General is the main public hosoital in San Francisco, and itis an
From Dobos Ferry, New York important safety net for our community. More than 70% of the families
S y1 ¥ 1 serves are uninsured o undennsured. 115 Gpen to anyone who
Youve followed him since July 2013 Fves, works in or visis the oty
Followed by 31,462,468 psople Priscita has served at The Genral over the past couple of .

See More

© Sheryl Sandoerg, Michael Artington, 8 Hoang Top Comments
Duomg and 120,920 others ke this.

%3,502 shares
g
Brett Cashen Thank you so much! As an RN at SFGH | cant
tell you how much this money means 1o the employees and
‘more importantly the patents!”

Like - Reply - 5 245
A

View moro comments

‘ Mark Zuckerborg

Horo's a Friends Day photo with 0ne of my oldest friends and cne of
1xnow, Dustin Moskovitz, on the right

the yoars. siondsdsy

Rihanna The Al
American

)

Daft Punk

D
Soundsyste

BOOKS

Storage
Backend

* Facebook 2014 Q4 Report

Photo Caches

Close to users
Reduce backbone traffic

Co-located with backend
Reduce backend IO

Photo Serving Stack

®
QI B0 O

|

|

Edge Cache }

AN

Flash

[Origin Cache J/

i

|

Storage
Backend

An Analysis of
Facebook Photo Caching

[Huang et al. SOSP’13] m@

¥t |

~ | Advanced caching
algorithms help! [Edge Cache }

Photo Serving Stack

N

Segmented LRU-3: Flash
10% less backbone traffic /
Origin Cache J
Greedy-Dual-Size-Frequency-3:
23% fewer backend 10s ﬁ

Storage
Backend

In Practice Photo Serving Stack

Q0
7 QI B0 O

& Tt

[Edge Cache }

N

FIFO was still used Flash
No known way to implement /
advanced algorithms efficiently Origin Cache

Storage
Backend

Theory Practice

,’@ A& 4

Advanced caching helps: L !
« 23% fewer backend IO\ /
* 10% less backbone traffic.

It to implement on flash:
~0 still used

Restricted Insertion Priority Queue:
efficiently implement advanced
caching algorithms on flash

Outline

 Why are advanced caching algorithms
difficult to implement on flash efficiently?

 How RIPQ solves this problem?
— Why use priority qgueue?
— How to efficiently implement one on flash?

 Evaluation

— 10% less backbone traffic
— 23% fewer backend IOs

Outline

 Why are advanced caching algorithms
difficult to implement on flash efficiently?

— Write pattern of FIFO and LRU

 How RIPQ solves this problem?
— Why use priority queue?
— How to efficiently implement one on flash?

 Evaluation

— 10% less backbone traffic
— 23% fewer backend 10s

FIFO Does Sequential Writes

Cache space of FIFO

A
[\

Head Tail

FIFO Does Seguential Writes

Cache space of FIFO

A
[\

Head Tail

Miss

10

FIFO Does Sequential Writes

Cache space of FIFO

A
[\

Head L e M Tail
1

it %

11

FIFO Does Seguential Writes

Cache space of FIFO

A
[\

Head II& Tall

Evicted

No random writes needed for FIFO

12

LRU Needs Random Writes

Cache space of LRU

A
[\
Hit ¢y

Locations on flash # Locations in LRU queue

13

LRU Needs Random Writes

Cache space of LRU

Non-contiguous
on flash

Random writes needed to reuse space

14

Why Care About Random Writes?

* Write-heavy workload

— Long tall access pattern, moderate hit ratio
— Each miss triggers a write to cache

« Small random writes are harmful for flash

—e.g. Min et al. FAST 12
— High write amplification

-

[Low write throughput

| Short device lifetime

What write size do we need?

« Large writes

— High write throughput at high utilization
— 16~32MiB in Min et al. FAST'2012

« What's the trend since then?

— Random writes tested for 3 modern devices
— 128~512MiB needed now

100MiB+ writes needed for efficiency

16

Outline

 Why are advanced caching algorithms
difficult to implement on flash efficiently?

 How RIPQ solves this problem?

 Evaluation

17

RIPQ Architecture
(Restricted Insertion Priority Queue)

Advanced Caching Policy

(SLRU, GDSF ...)

|

| 1]

Priority Queue API

)

4 4 4

Approximate Priority Queue

v v

1 Flash-friendly Workloads

Rav| st

1

RIPQ,

Caching algorithms
approximated as well

Efficient caching
on flash

RIPQ Architecture
(Restricted Insertion Priority Queue)

[Advanced Caching Policy
(SLRU, GDSF ...)
/—(Priority Queue API
3 1

Approximate Priority Queue

v v

l Flash-friendly Workloads

Rav| st

1

|

» Restricted insertion

|4—>Section merge/split

>Large writes
| azy updates

RIPQ,

Priority Queue API

* No single best caching policy

« Segmented LRU [Karedla’94]
— Reduce both backend 10 and backbone traffic
— SLRU-3: best algorithm for Edge so far

* Greedy-Dual-Size-Frequency [Cherkasova’'98]
— Favor small objects
— Further reduces backend 10
— GDSF-3: best algorithm for Origin so far

Segmented LRU

 Concatenation of K LRU caches

Cache space of SLRU-3
A

L1

Head I

Miss

21

Segmented LRU

 Concatenation of K LRU caches

Cache space of SLRU-3
A

| \
L3 2 L1
Head Tall

Miss Q

22

Segmented LRU

 Concatenation of K LRU caches

Cache space of SLRU-3
A

L1

[
L3 L2 __
Head Syl S Tail

Hit &3

23

Segmented LRU

 Concatenation of K LRU caches

Cache space of SLRU-3

A
[\

L3 \ L2 L1
Head

ey IO @!IIIII.Q,iIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII Tall

Hit A again

24

Greedy-Dual-Size-Frequency

* Favoring small objects

Cache space of GDSF-3

A
[\

Head Tail

25

Greedy-Dual-Size-Frequency

* Favoring small objects

Cache space of GDSF-3

A
[\

Head Tail

26

Greedy-Dual-Size-Frequency

* Favoring small objects

Cache space of GDSF-3
A

[

NI Tl

H ead [‘
. 4

27

Greedy-Dual-Size-Frequency

* Favoring small objects

Cache space of GDSF-3
A

Head II!‘.‘III‘.‘""7'7_:.17»;%.‘IIIIIIIIIIIIIIIIIIIIII Tall

* Write workload more random than LRU
« QOperations similar to priority queue

28

Relative Priority Queue for
Advanced Caching Algorithms

Cache space D 0.0

Head Tail

Miss object: insert(x, p) &

29

Relative Priority Queue for
Advanced Caching Algorithms

1.0 D’ Cache‘space 0.0

II‘:."..‘.‘.!IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII Tall

Head

Hit object: increase(x, p)

30

Head

Relative Priority Queue for
Advanced Caching Algorithms

1.0 Cache space
A

0.0

7
Y S .
oS T T T T TTETITIT

Implicit demotion on insert/increase:
* Object with lower priorities
moves towards the talil

Tall

31

Relative Priority Queue for
Advanced Caching Algorithms

1.0 Cache space 0.0
: A :
Head unummmumuunmumuunummmumuun||||||||||||||||||||||mumuunmmumumuunmumum|. Tail
!
Evicted

Evict from gqueue tall

Relative priority queue captures the
dynamics of many caching algorithms!

32

RIPQ Design: Large Writes

* Need to buffe Into block writes

* Once written, bIN

« 256MiB block size,
« Large caching capacity

« High write throughput

33

RIPQ Design:
Restricted Insertion Points

6006600

« EXxact priority gueue

 Insert to any block in the queue

« Each block needs a separate buffer

* Whole flash space buffered in RAM!

RIPQ Design:
Restricted Insertion Points

50060000

Solution: restricted insertion points

35

Section 1s Unit for Insertion

1..0.6 0.6 ..0.35 0.35..0

Section Section Section
Head |(OPOO OO0 OO0 T

O Active block with O Sealed block
RAM buffer on flash

Each section has one insertion point

Section 1s Unit for Insertion

Qﬁz 0.62 .. 0.33 0.3D

Section Section Section

s |(OOOH@OHOOO| i

Insert(x, 0.55)

Insert procedure

* Find corresponding section

« Copy data into active block

« Updating section priority range

Se

.. /62 0.62 ..0.33 0.33..0
S¢gcuon Section Section
st FOOHOOHOOO| i

O Active block with O Sealed block
RAM buffer on flash

Relative orders within one section not guaranteed!

38

Trade-off In Section Size

1..0.62 0.62 .. 0.33 0.33..0

Section Section Section

et | OO HOOHOOO| ™

Section size controls approximation error

 Sections J, approximation error)
« Sections), RAM buffer)

39

RIPQ Design: Lazy Update

Naive approach: copy to the
corresponding active block

Section Section Section

et [@OOHOOHOOO| ™
\\ < //

Increase(x, 0.9)

Problem with naive approach
« Data copying/duplication on flash

Head

RIPQ Design: Lazy Update

Section Section Section

OO0 OO OO0

Solution: use virtual block to
track the updated location!

Tall

41

RIPQ Design: Lazy Update

Section Section Section
vead |00 POOQHOOQ |

Virtual Blocks

Solution: use virtual block to
track the updated location!

Head

Virtual Block Remembers
Update Location

Section Section Section
OO0 OO OO0
1
=\ =\ ~«/ /-\ s
‘:l_ _]2' (\./' (_/'," (\../'
X I,
_________ X .~ increase(x, 0.9)

-
-
————————

No data written during virtual update

Tall

Actual Update During Eviction

X now at tail block.

Section Section Section /

st (OO HOOHOOO |
’-\ ’-\ "\ ’-\ ’-\ "
(_I' (_/' (s_l' _/' (_/'ll"

\\
N -
- -
--——---———_——

Actual Update During Eviction

Section Section Section

et [0 @O OO0 |

’-\ ’-\

o oll\ae] oY
Copy data to w
the active block

Always one copy of data on flash

RIPQ Design

» Relative priority queue API
* RIPQ design points
— Large writes
— Restricted insertion points
— Lazy update
— Section merge/split
« Balance section sizes and RAM buffer usage

 Static caching
— Photos are static

46

Outline

 Why are advanced caching algorithms
difficult to implement on flash efficiently?

 How RIPQ solves this problem?

 Evaluation

47

Evaluation Questions

« How much RAM buffer needed?

 How good is RIPQ’s approximation?

* What's the throughput of RIPQ?

Evaluation Approach

 Real-world Facebook workloads
— Origin
— Edge

« 670 GIB flash card

— 256MIB block size
— 90% utilization

» Baselines
— FIFO
— SIPQ: Single Insertion Priority Queue

49

RIPQ Needs Small Number of Insertion Points

Object-wise hit-ratio (%)

45 -

40 -

35 -

30 -

Exact GDSF-3

Exact SLRU-3

Insertion points

50

RIPQ Needs Small Number of Insertion Points

45
N s ssssssssssssssssssses: = Exact GDSF-3
>
— 40 PP
e
IS
+5 35 -
= Exact SLRU-3
(o)
g 30 - =@==S|RU-3
3
Q L Prrcccccccccoccrcccrcoccoccocee: o FIFO
5‘ 25 T
O 2 4 8 16 32

Insertion points

51

RIPQ Needs Small Number of Insertion Points

45 -
— - « Exact GDSF-3
S
— 40 _
2 =i=GDSF-3
©
+L 35 4
2 Exact SLRU-3
()]
B2 30 - ‘ J =9=S|LRU-3
T L
O \ 1
Q . == Aeprccccccccnce: - FIFO
5‘ 25 I T \|j T 1
@ 2 4 8 16 32

Insertion points

You don’t need much RAM buffer (2GiB)! |

52

Object-wise hit-ratio (%)

RIPQ Has High Fidelity

1

SLRU-1 SLRU-2 SLRU-3 GDSF-1 GDSF-2 GDSF-3 FIFO

53

Object-wise hit-ratio (%)

RIPQ Has High Fidelity

M FIFO

rrrrnri

SLRU-1 SLRU-2 SLRU-3 GDSF-1 GDSF-2 GDSF-3 FIFO

54

RIPQ Has High Fidelity

40

35 " Exact
30 i i

- i ® FIFO

SLRU-1 SLRU-2 SLRU-3 GDSF-1 GDSF-2 GDSF-3 FIFO

Object-wise hit-ratio (%)

‘RIPQ achieves <0.5% difference for all algorithms

55

Object-wise hit-ratio (%)

RIPQ Has High Fidelity

+16%

40

35 W Exact
30 H RIPQ
55] I I ® FIFO

SLRU-1 SLRU-2 SLRU-3 GDSF-1 GDSF-2 GDSF-3 FIFO

‘+16% hit-ratio =» 23% fewer backend |Os ‘

56

RIPQ Has High Throughput

30000

= - - — —~ - : FIFO

25000
20000
1

>000 = RIPQ
10000

5000

O I I I I I]

SLRU-1 SLRU-2 SLRU-3 GDSF-1 GDSF-2 GDSF-3

Throughput (req./sec)

|RIPQ throughput comparable to FIFO (<10% diff.) |

57

Related Works

RAM-based advanced caching
SLRU(Karedla’94), GDSF(Young’94, Cao’97, Cherkasova’01),
SIZE(Abrams’96), LFU(Maffeis’93), LIRS (Jiang’02), ...

RIPQ enables their use on flash

Flash-based caching solutions
Facebook FlashCache, Janus(Albrecht “13), Nitro(Li’13),
OP-FCL(Oh’12), FlashTier(Saxena’12), Hec(Yang’13), ...

RIPQ supports advanced algorithms

Flash performance
Stoica’09, Chen’09, Bouganim’09, Min’12, ...

Trend continues for modern flash cards

58

RIPQ

* First framework for advanced caching on flash
— Relative priority gueue interface
— Large writes
— Restricted insertion points
— Lazy update
— Section merge/split

* Enables SLRU-3 & GDSF-3 for Facebook photos

— 10% less backbone traffic
— 23% fewer backend IOs

