
RIPQ: Advanced Photo Caching

on Flash for Facebook

Linpeng Tang (Princeton)

Qi Huang (Cornell & Facebook)

Wyatt Lloyd (USC & Facebook)

Sanjeev Kumar (Facebook)

Kai Li (Princeton)

1

22
* Facebook 2014 Q4 Report

Photo Serving Stack2 Billion* Photos

Shared Daily

Storage

Backend

3

Photo Caches

Close to users

Reduce backbone traffic

Co-located with backend

Reduce backend IO

Flash

Storage

Backend

Edge Cache

Origin Cache

Photo Serving Stack

4

Flash

Storage

Backend

Edge Cache

Origin Cache

Photo Serving Stack
An Analysis of

Facebook Photo Caching

[Huang et al. SOSP’13]

Segmented LRU-3:

10% less backbone traffic

Greedy-Dual-Size-Frequency-3:

23% fewer backend IOs

Advanced caching

algorithms help!

5

FlashFIFO was still used

No known way to implement

advanced algorithms efficiently

Storage

Backend

Edge Cache

Origin Cache

In Practice Photo Serving Stack

6

Advanced caching helps:

• 23% fewer backend IOs

• 10% less backbone traffic

Theory Practice

Difficult to implement on flash:

• FIFO still used

Restricted Insertion Priority Queue:

efficiently implement advanced

caching algorithms on flash

Outline

• Why are advanced caching algorithms
difficult to implement on flash efficiently?

• How RIPQ solves this problem?
– Why use priority queue?

– How to efficiently implement one on flash?

• Evaluation
– 10% less backbone traffic

– 23% fewer backend IOs
7

Outline

• Why are advanced caching algorithms
difficult to implement on flash efficiently?
– Write pattern of FIFO and LRU

• How RIPQ solves this problem?
– Why use priority queue?

– How to efficiently implement one on flash?

• Evaluation
– 10% less backbone traffic

– 23% fewer backend IOs
8

FIFO Does Sequential Writes

9

Cache space of FIFO

Head Tail

FIFO Does Sequential Writes

10

Cache space of FIFO

Head Tail

Miss

FIFO Does Sequential Writes

11

Cache space of FIFO

Head Tail

Hit

FIFO Does Sequential Writes

12

Cache space of FIFO

Head Tail

Evicted

No random writes needed for FIFO

LRU Needs Random Writes

13

Cache space of LRU

Head Tail

Locations on flash ≠ Locations in LRU queue

Hit

LRU Needs Random Writes

14

Head Tail

Non-contiguous

on flash

Random writes needed to reuse space

Cache space of LRU

Why Care About Random Writes?

• Write-heavy workload

– Long tail access pattern, moderate hit ratio

– Each miss triggers a write to cache

• Small random writes are harmful for flash

– e.g. Min et al. FAST’12

– High write amplification

15

Low write throughput

Short device lifetime

What write size do we need?

• Large writes

– High write throughput at high utilization

– 16~32MiB in Min et al. FAST’2012

• What’s the trend since then?

– Random writes tested for 3 modern devices

– 128~512MiB needed now

16

100MiB+ writes needed for efficiency

Outline

• Why are advanced caching algorithms

difficult to implement on flash efficiently?

• How RIPQ solves this problem?

• Evaluation

17

RIPQ Architecture
(Restricted Insertion Priority Queue)

18

Advanced Caching Policy

(SLRU, GDSF …)

RIPQ

Priority Queue API

RAM Flash

Flash-friendly Workloads

Approximate Priority Queue

Efficient caching

on flash

Caching algorithms

approximated as well

RIPQ Architecture
(Restricted Insertion Priority Queue)

19

Advanced Caching Policy

(SLRU, GDSF …)

RIPQ

Priority Queue API

RAM Flash

Flash-friendly Workloads

Approximate Priority Queue

Restricted insertion
Section merge/split

Large writes
Lazy updates

Priority Queue API

• No single best caching policy

• Segmented LRU [Karedla’94]

– Reduce both backend IO and backbone traffic

– SLRU-3: best algorithm for Edge so far

• Greedy-Dual-Size-Frequency [Cherkasova’98]

– Favor small objects

– Further reduces backend IO

– GDSF-3: best algorithm for Origin so far

20

Segmented LRU

• Concatenation of K LRU caches

21

Cache space of SLRU-3

Head
L2 L1

Tail
L3

Miss

Segmented LRU

• Concatenation of K LRU caches

22

Head
L2 L1

Tail
L3

Miss

Cache space of SLRU-3

Segmented LRU

• Concatenation of K LRU caches

23

Cache space of SLRU-3

Head
L2 L1

Tail
L3

Hit

Segmented LRU

• Concatenation of K LRU caches

24

Cache space of SLRU-3

Head
L2 L1

Tail
L3

Hit again

Greedy-Dual-Size-Frequency

• Favoring small objects

25

Cache space of GDSF-3

Head Tail

Greedy-Dual-Size-Frequency

• Favoring small objects

26

Cache space of GDSF-3

Head Tail

Miss

Greedy-Dual-Size-Frequency

• Favoring small objects

27

Cache space of GDSF-3

Head Tail

Miss

Greedy-Dual-Size-Frequency

• Favoring small objects

28

Cache space of GDSF-3

Head

• Write workload more random than LRU

• Operations similar to priority queue

Tail

Relative Priority Queue for

Advanced Caching Algorithms

29

Cache space

Head Tail

1.0 0.0

Miss object: insert(x, p)

p

Relative Priority Queue for

Advanced Caching Algorithms

30

Cache space

Head Tail

1.0 0.0

Hit object: increase(x, p’)

p’

Relative Priority Queue for

Advanced Caching Algorithms

31

Cache space

Head Tail

1.0 0.0

Implicit demotion on insert/increase:

• Object with lower priorities

moves towards the tail

Relative Priority Queue for

Advanced Caching Algorithms

32

Cache space

Head Tail

1.0 0.0

Evict from queue tail

Evicted

Relative priority queue captures the

dynamics of many caching algorithms!

RIPQ Design: Large Writes

33

• Need to buffer object writes (10s KiB) into block writes

• Once written, blocks are immutable!

• 256MiB block size, 90% utilization

• Large caching capacity

• High write throughput

RIPQ Design:

Restricted Insertion Points

34

• Exact priority queue

• Insert to any block in the queue

• Each block needs a separate buffer

• Whole flash space buffered in RAM!

RIPQ Design:

Restricted Insertion Points

35

Solution: restricted insertion points

Section is Unit for Insertion

36

1 .. 0.6 0.6 .. 0.35 0.35 .. 0

Active block with

RAM buffer

Sealed block

on flash

Head Tail

Each section has one insertion point

Section Section Section

Section is Unit for Insertion

37

Head Tail+1

insert(x, 0.55)

1 .. 0.6 0.6 .. 0.35 0.35 .. 01 .. 0.62 0.62 .. 0.33 0.33 .. 0

Insert procedure

• Find corresponding section

• Copy data into active block

• Updating section priority range

Section Section Section

1 .. 0.62 0.62 .. 0.33 0.33 .. 0

Section is Unit for Insertion

38

Active block with

RAM buffer

Sealed block

on flash

Head Tail

Relative orders within one section not guaranteed!

Section Section Section

Trade-off in Section Size

39

Section size controls approximation error

• Sections , approximation error

• Sections , RAM buffer

Head Tail

1 .. 0.62 0.62 .. 0.33 0.33 .. 0

Section Section Section

RIPQ Design: Lazy Update

40

Head Tail

increase(x, 0.9)

Problem with naïve approach

• Data copying/duplication on flash

x

+1

Naïve approach: copy to the

corresponding active block

Section Section Section

RIPQ Design: Lazy Update

41

Head Tail

Solution: use virtual block to

track the updated location!

Section Section Section

RIPQ Design: Lazy Update

42

Head Tail

Virtual Blocks

Solution: use virtual block to

track the updated location!

Section Section Section

Virtual Block Remembers

Update Location

43

Head Tail

No data written during virtual update

increase(x, 0.9)x

+1

Section Section Section

Actual Update During Eviction

44

Head Tail

x

Section Section Section

x now at tail block.

Actual Update During Eviction

45

Head Tail

-1

+1

xCopy data to

the active block

Always one copy of data on flash

Section Section Section

RIPQ Design

• Relative priority queue API

• RIPQ design points

– Large writes

– Restricted insertion points

– Lazy update

– Section merge/split

• Balance section sizes and RAM buffer usage

• Static caching

– Photos are static

46

Outline

• Why are advanced caching algorithms

difficult to implement on flash efficiently?

• How RIPQ solves this problem?

• Evaluation

47

Evaluation Questions

• How much RAM buffer needed?

• How good is RIPQ’s approximation?

• What’s the throughput of RIPQ?

48

Evaluation Approach

• Real-world Facebook workloads

– Origin

– Edge

• 670 GiB flash card

– 256MiB block size

– 90% utilization

• Baselines

– FIFO

– SIPQ: Single Insertion Priority Queue

49

RIPQ Needs Small Number of Insertion Points

Insertion points

50

O
b

je
c
t-

w
is

e
 h

it
-r

a
ti
o

 (
%

)

25

30

35

40

45

2 4 8 16 32

Exact GDSF-3

GDSF-3

Exact SLRU-3

SLRU-3

FIFO

+6%

+16%

RIPQ Needs Small Number of Insertion Points

51

O
b

je
c
t-

w
is

e
 h

it
-r

a
ti
o

 (
%

)

25

30

35

40

45

2 4 8 16 32

Exact GDSF-3

GDSF-3

Exact SLRU-3

SLRU-3

FIFO

Insertion points

RIPQ Needs Small Number of Insertion Points

52

O
b

je
c
t-

w
is

e
 h

it
-r

a
ti
o

 (
%

)

25

30

35

40

45

2 4 8 16 32

Exact GDSF-3

GDSF-3

Exact SLRU-3

SLRU-3

FIFO

You don’t need much RAM buffer (2GiB)!

Insertion points

RIPQ Has High Fidelity

53

O
b

je
c
t-

w
is

e
 h

it
-r

a
ti
o

 (
%

)

20

25

30

35

40

45

SLRU-1 SLRU-2 SLRU-3 GDSF-1 GDSF-2 GDSF-3 FIFO

Exact

RIPQ

FIFO

RIPQ Has High Fidelity

54

O
b

je
c
t-

w
is

e
 h

it
-r

a
ti
o

 (
%

)

20

25

30

35

40

45

SLRU-1 SLRU-2 SLRU-3 GDSF-1 GDSF-2 GDSF-3 FIFO

Exact

RIPQ

FIFO

RIPQ Has High Fidelity

55

O
b

je
c
t-

w
is

e
 h

it
-r

a
ti
o

 (
%

)

20

25

30

35

40

45

SLRU-1 SLRU-2 SLRU-3 GDSF-1 GDSF-2 GDSF-3 FIFO

Exact

RIPQ

FIFO

RIPQ achieves ≤0.5% difference for all algorithms

RIPQ Has High Fidelity

56

O
b

je
c
t-

w
is

e
 h

it
-r

a
ti
o

 (
%

)

20

25

30

35

40

45

SLRU-1 SLRU-2 SLRU-3 GDSF-1 GDSF-2 GDSF-3 FIFO

Exact

RIPQ

FIFO

+16% hit-ratio ➔ 23% fewer backend IOs

+16%

RIPQ Has High Throughput

57

T
h
ro

u
g

h
p
u

t
(r

e
q
./
s
e
c
)

RIPQ throughput comparable to FIFO (≤10% diff.)

0

5000

10000

15000

20000

25000

30000

SLRU-1 SLRU-2 SLRU-3 GDSF-1 GDSF-2 GDSF-3

RIPQ

FIFO

Related Works

RAM-based advanced caching
SLRU(Karedla’94), GDSF(Young’94, Cao’97, Cherkasova’01),

SIZE(Abrams’96), LFU(Maffeis’93), LIRS (Jiang’02), …

Flash-based caching solutions
Facebook FlashCache, Janus(Albrecht ’13), Nitro(Li’13),
OP-FCL(Oh’12), FlashTier(Saxena’12), Hec(Yang’13), …

Flash performance
Stoica’09, Chen’09, Bouganim’09, Min’12, …

58

RIPQ enables their use on flash

RIPQ supports advanced algorithms

Trend continues for modern flash cards

RIPQ

• First framework for advanced caching on flash

– Relative priority queue interface

– Large writes

– Restricted insertion points

– Lazy update

– Section merge/split

• Enables SLRU-3 & GDSF-3 for Facebook photos

– 10% less backbone traffic

– 23% fewer backend IOs

59

