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Photo Caches

Close to users
Reduce backbone traffic

Co-located with backend
Reduce backend IO

Photo Serving Stack
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An Analysis of
Facebook Photo Caching

[Huang et al. SOSP’13] m@
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~ | Advanced caching
algorithms help! [ Edge Cache }
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In Practice Photo Serving Stack
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Theory Practice
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Advanced caching helps: L !
« 23% fewer backend IO\ /
* 10% less backbone traffic.

It to implement on flash:
~0 still used

Restricted Insertion Priority Queue:
efficiently implement advanced
caching algorithms on flash




Outline

 Why are advanced caching algorithms
difficult to implement on flash efficiently?

 How RIPQ solves this problem?
— Why use priority qgueue?
— How to efficiently implement one on flash?

 Evaluation

— 10% less backbone traffic
— 23% fewer backend IOs



Outline

 Why are advanced caching algorithms
difficult to implement on flash efficiently?

— Write pattern of FIFO and LRU

 How RIPQ solves this problem?
— Why use priority queue?
— How to efficiently implement one on flash?

 Evaluation

— 10% less backbone traffic
— 23% fewer backend 10s



FIFO Does Sequential Writes

Cache space of FIFO
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FIFO Does Seguential Writes

Cache space of FIFO
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Evicted

No random writes needed for FIFO
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LRU Needs Random Writes

Cache space of LRU
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Locations on flash # Locations in LRU queue
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LRU Needs Random Writes

Cache space of LRU

Non-contiguous
on flash

Random writes needed to reuse space

14



Why Care About Random Writes?

* Write-heavy workload

— Long tall access pattern, moderate hit ratio
— Each miss triggers a write to cache

« Small random writes are harmful for flash

—e.g. Min et al. FAST 12
— High write amplification

-

[ Low write throughput

| Short device lifetime



What write size do we need?

« Large writes

— High write throughput at high utilization
— 16~32MiB in Min et al. FAST'2012

« What's the trend since then?

— Random writes tested for 3 modern devices
— 128~512MiB needed now

100MiB+ writes needed for efficiency
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Outline

 Why are advanced caching algorithms
difficult to implement on flash efficiently?

 How RIPQ solves this problem?

 Evaluation
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RIPQ Architecture
(Restricted Insertion Priority Queue)

Advanced Caching Policy

(SLRU, GDSF ...)
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Caching algorithms
approximated as well

Efficient caching
on flash



RIPQ Architecture
(Restricted Insertion Priority Queue)

[ Advanced Caching Policy
(SLRU, GDSF ...)
/—( Priority Queue API
3 1

Approximate Priority Queue

v v

l Flash-friendly Workloads

Rav| st
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» Restricted insertion

|4—>Section merge/split

>Large writes
| azy updates

RIPQ,




Priority Queue API

* No single best caching policy

« Segmented LRU [Karedla’94]
— Reduce both backend 10 and backbone traffic
— SLRU-3: best algorithm for Edge so far

* Greedy-Dual-Size-Frequency [Cherkasova’'98]
— Favor small objects
— Further reduces backend 10
— GDSF-3: best algorithm for Origin so far



Segmented LRU

 Concatenation of K LRU caches

Cache space of SLRU-3
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Segmented LRU

 Concatenation of K LRU caches

Cache space of SLRU-3
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Segmented LRU

 Concatenation of K LRU caches

Cache space of SLRU-3
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Segmented LRU

 Concatenation of K LRU caches

Cache space of SLRU-3
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Greedy-Dual-Size-Frequency

* Favoring small objects

Cache space of GDSF-3
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Greedy-Dual-Size-Frequency

* Favoring small objects

Cache space of GDSF-3

A
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Head Tail
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Greedy-Dual-Size-Frequency

* Favoring small objects

Cache space of GDSF-3
A
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Greedy-Dual-Size-Frequency

* Favoring small objects

Cache space of GDSF-3
A

Head IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII!‘.‘IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII‘.‘""7'7_:.17»;%.‘IIIIIIIIIIIIIIIIIIIIII Tall

* Write workload more random than LRU
« QOperations similar to priority queue
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Relative Priority Queue for
Advanced Caching Algorithms

Cache space D 0.0

Head Tail

Miss object: insert(x, p) &
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Relative Priority Queue for
Advanced Caching Algorithms

1.0 D’ Cache‘space 0.0
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Head

Hit object: increase(x, p)
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Head

Relative Priority Queue for
Advanced Caching Algorithms

1.0 Cache space
A

0.0
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Implicit demotion on insert/increase:
* Object with lower priorities
moves towards the talil

Tall
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Relative Priority Queue for
Advanced Caching Algorithms

1.0 Cache space 0.0
: A :
Head unummmumuunmumuunummmumuun||||||||||||||||||||||mumuunmmumumuunmumum|. Tail
!
Evicted

Evict from gqueue tall

Relative priority queue captures the
dynamics of many caching algorithms!
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RIPQ Design: Large Writes

* Need to buffe Into block writes

* Once written, bIN

« 256MiB block size,
« Large caching capacity

« High write throughput
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RIPQ Design:
Restricted Insertion Points

6006600

« EXxact priority gueue

 Insert to any block in the queue

« Each block needs a separate buffer

* Whole flash space buffered in RAM!




RIPQ Design:
Restricted Insertion Points

50060000

Solution: restricted insertion points
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Section 1s Unit for Insertion

1..0.6 0.6 ..0.35 0.35..0

Section Section Section
Head  |(OPOO OO0 OO0 T

O Active block with O Sealed block
RAM buffer on flash

Each section has one insertion point




Section 1s Unit for Insertion

Qﬁz 0.62 .. 0.33 0.3D

Section Section Section

s |(OOOH@OHOOO| i

Insert(x, 0.55)

Insert procedure

* Find corresponding section

« Copy data into active block

« Updating section priority range



Se

.. /62 0.62 ..0.33 0.33..0
S¢gcuon Section Section
st FOOHOOHOOO| i

O Active block with O Sealed block
RAM buffer on flash

Relative orders within one section not guaranteed!
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Trade-off In Section Size

1..0.62 0.62 .. 0.33 0.33..0

Section Section Section

et | OO HOOHOOO| ™

Section size controls approximation error

 Sections J, approximation error )
« Sections ), RAM buffer )
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RIPQ Design: Lazy Update

Naive approach: copy to the
corresponding active block

Section Section Section

et [@OOHOOHOOO| ™
\\ < //

Increase(x, 0.9)

Problem with naive approach
« Data copying/duplication on flash




Head

RIPQ Design: Lazy Update

Section Section Section

OO0 OO OO0

Solution: use virtual block to
track the updated location!

Tall
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RIPQ Design: Lazy Update

Section Section Section
vead |00 POOQHOOQ |

Virtual Blocks

Solution: use virtual block to
track the updated location!




Head

Virtual Block Remembers
Update Location

Section Section Section
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Actual Update During Eviction

X now at tail block.
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Actual Update During Eviction

Section Section Section

et [0 @O OO0 |

’-\ ’-\

o oll\ae ] oY
Copy data to w
the active block

Always one copy of data on flash




RIPQ Design

» Relative priority queue API
* RIPQ design points
— Large writes
— Restricted insertion points
— Lazy update
— Section merge/split
« Balance section sizes and RAM buffer usage

 Static caching
— Photos are static
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Outline

 Why are advanced caching algorithms
difficult to implement on flash efficiently?

 How RIPQ solves this problem?

 Evaluation
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Evaluation Questions

« How much RAM buffer needed?

 How good is RIPQ’s approximation?

* What's the throughput of RIPQ?



Evaluation Approach

 Real-world Facebook workloads
— Origin
— Edge

« 670 GIB flash card

— 256MIB block size
— 90% utilization

» Baselines
— FIFO
— SIPQ: Single Insertion Priority Queue

49



RIPQ Needs Small Number of Insertion Points

Object-wise hit-ratio (%)
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Insertion points
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RIPQ Needs Small Number of Insertion Points
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RIPQ Needs Small Number of Insertion Points
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Insertion points

You don’t need much RAM buffer (2GiB)! |
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Object-wise hit-ratio (%)

RIPQ Has High Fidelity

1

SLRU-1 SLRU-2 SLRU-3 GDSF-1 GDSF-2 GDSF-3 FIFO
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Object-wise hit-ratio (%)

RIPQ Has High Fidelity

M FIFO

rrrrnri

SLRU-1 SLRU-2 SLRU-3 GDSF-1 GDSF-2 GDSF-3 FIFO
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RIPQ Has High Fidelity

40

35 " Exact
30 i i

- i ® FIFO

SLRU-1 SLRU-2 SLRU-3 GDSF-1 GDSF-2 GDSF-3 FIFO

Object-wise hit-ratio (%)

‘RIPQ achieves <0.5% difference for all algorithms
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Object-wise hit-ratio (%)

RIPQ Has High Fidelity

+16%

40

35 W Exact
30 H RIPQ
55 ] I I ® FIFO

SLRU-1 SLRU-2 SLRU-3 GDSF-1 GDSF-2 GDSF-3 FIFO

‘+16% hit-ratio =» 23% fewer backend |Os ‘
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RIPQ Has High Throughput

30000

= - - — —~ - : FIFO
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SLRU-1 SLRU-2 SLRU-3 GDSF-1 GDSF-2 GDSF-3

Throughput (req./sec)

|RIPQ throughput comparable to FIFO (<10% diff.) |
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Related Works

RAM-based advanced caching
SLRU(Karedla’94), GDSF(Young’94, Cao’97, Cherkasova’01),
SIZE(Abrams’96), LFU(Maffeis’93), LIRS (Jiang’02), ...

RIPQ enables their use on flash

Flash-based caching solutions
Facebook FlashCache, Janus(Albrecht “13), Nitro(Li’13),
OP-FCL(Oh’12), FlashTier(Saxena’12), Hec(Yang’13), ...

RIPQ supports advanced algorithms

Flash performance
Stoica’09, Chen’09, Bouganim’09, Min’12, ...

Trend continues for modern flash cards
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RIPQ

* First framework for advanced caching on flash
— Relative priority gueue interface
— Large writes
— Restricted insertion points
— Lazy update
— Section merge/split

* Enables SLRU-3 & GDSF-3 for Facebook photos

— 10% less backbone traffic
— 23% fewer backend IOs



