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Example: HTTP Redir/Proxying 
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Naïve Policy Choices 
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Naïve Policy Choices 
Location-Aware: “Closest Node” 

Service 
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Client 
Requests 

Mapping 
Nodes 

Goal: support 
complex policies 

across many nodes. 



Policies as Constraints 

Replicas DONAR 
Nodes 

bandwidth_cap 
= 10,000 req/m 

split_ratio = 10% 
allowed_dev = ± 5% 



Eg. 10-Server Deployment 

How to describe policy 
 with constraints? 
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Cap as Overload Protection 
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12 Hours Later… 
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“Load Balance” 
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12 Hours Later… 
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Optimization:  
Policy Realization 

 

• Global LP describing “optimal” pairing 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Clients: c ∈ C  Nodes: n ∈ N Replica Instances: i ∈ I 

 
 

  

Minimize network cost 
 

min   α𝒄 ∙ 𝑅𝑐𝑖 ∙ 𝑐𝑜𝑠𝑡(𝑐, 𝑖)

𝑖∈𝐼𝑐∈𝐶

 

Server loads within 
tolerance 

𝑃𝑖 −ω𝑖  ≤ 𝜀𝑖   

Bandwidth caps met 
 

𝐵𝑖 < 𝐵 ∙ 𝑃𝑖  

s.t. 
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Optimization Workflow 
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Continuously! 

(respond to underlying traffic) 



By The Numbers 

101 102 

 
103 

 
104 

 

DONAR Nodes 

Customers 

  replicas/customer 

  client groups/ 
  customer 

Problem for each customer: 
102 * 104 = 106   
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Not Accurate! 
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No one node sees 
entire client population 
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Aggregate at Central Coordinator? 
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Aggregate at Central Coordinator? 
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So Far 

Accurate Efficient Reliable 

Local only No Yes Yes 

Central 
Coordinator 

Yes No No 



Decomposing Objective Function 

min   α𝒄 ∙ 𝑅𝑐𝑖 ∙ 𝑐𝑜𝑠𝑡(𝑐, 𝑖)

𝑖∈𝐼𝑐∈𝐶

 

 𝑠𝑛   α𝑐𝑛 ∙ 𝑅𝑛𝑐𝑖 ∙ 𝑐𝑜𝑠𝑡(𝑐, 𝑖)

𝑖∈𝐼𝑐∈𝐶𝑛∈𝑁

 

Traffic from c  

prob of mapping c to i  

cost of mapping c to i 

∀  clients ∀  instances 

= 

∀  nodes Traffic to this node 

We also decompose 
constraints  

(more complicated) 



Decomposed Local Problem 
For Some Node (n*) 

min 

loadi  = f(prevailing load on each server + 
load I will impose on each server) 

∀𝑖𝑙𝑜𝑎𝑑𝑖  +  𝑠𝑛∗   α𝑐𝑛∗ ∙ 𝑅𝑛∗𝑐𝑖 ∙ 𝑐𝑜𝑠𝑡 𝑐, 𝑖

𝑖∈𝐼𝑐∈𝐶

 

Local distance 
minimization 

Global load 
information 
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DONAR Algorithm 
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DONAR Algorithm 

• Provably 
converges to 
global optimum 
 

• Requires no 
coordination 
 

• Reduces message 
passing by 104 

 

Service 
Replicas 

Mapping 
Nodes 



Better! 

Accurate Efficient Reliable 

Local only No Yes Yes 

Central 
Coordinator 

Yes No No 

DONAR Yes Yes Yes 
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Production and Deployment 

• Publicly deployed 24/7 since November 2009 
 

• IP2Geo data from Quova Inc. 
 
• Production use: 

– All MeasurementLab Services  
(incl. FCC Broadband Testing)  

– CoralCDN 
 

• Services around 1M DNS requests per day 



Systems Challenges (See Paper!) 

• Network availability  
Anycast with BGP  

 

• Reliable data storage 
Chain-Replication with Apportioned Queries 

 

• Secure, reliable updates 
Self-Certifying Update Protocol 



CoralCDN 
Replicas 

DONAR 
Nodes 

Client 
Requests 

CoralCDN Experimental Setup 

split_weight  = .1 
tolerance = .02 



Results: DONAR Curbs Volatility 

“Closest Node” 
policy 

DONAR “Equal 
Split” Policy 



Results: DONAR Minimizes Distance 
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Conclusions 

• Dynamic server selection is difficult 
– Global constraints 
– Distributed decision-making 

 
• Services reap benefit of outsourcing to DONAR. 

– Flexible policies 
– General: Supports DNS & HTTP Proxying 
– Efficient distributed constraint optimization 

 
• Interested in using? Contact me or visit 

http://www.donardns.org. 
 
 



Questions? 
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Doesn’t [Akamai/UltraDNS/etc] 
Already Do This? 

• Existing approaches use alternative, 
centralized formulations. 

 

• Often restrict the set of nodes per-service. 

 

• Lose benefit of large number of nodes 
(proxies/DNS servers/etc). 

 

 

 

 

 


