DONAR Decentralized Server Selection for Cloud Services

Patrick Wendell, Princeton University

Joint work with Joe Wenjie Jiang, Michael J. Freedman, and Jennifer Rexford

Outline

- Server selection background
- Constraint-based policy interface

• Scalable optimization algorithm

Production deployment

User Facing Services are Geo-Replicated

Reasoning About Server Selection

Example: Distributed DNS

Example: HTTP Redir/Proxying

Reasoning About Server Selection

Reasoning About Server Selection

Outline

• Server selection background

• Constraint-based policy interface

• Scalable optimization algorithm

• Production deployment

Naïve Policy Choices Load-Aware: "Round Robin"

Naïve Policy Choices Location-Aware: "Closest Node"

Client Requests		Mapping Nodes		Service Replicas
	Goa	al: su	pport	3
	com	olex p	olicie	S
	across	man	y nod	es.
			`	

Policies as Constraints

Eg. 10-Server Deployment

How to describe policy with constraints?

No Constraints Equivalent to "Closest Node"

No Constraints Equivalent to "Closest Node"

Cap as Overload Protection

12 Hours Later...

"Load Balance" (split = 10%, tolerance = 5%)

"Load Balance" (split = 10%, tolerance = 5%)

12 Hours Later...

Large range of policies by varying cap/weight

Outline

• Server selection background

• Constraint-based policy interface

• Scalable optimization algorithm

• Production deployment

Optimization: Policy Realization

Optimization Workflow

Optimization Workflow

Per-customer!

Optimization Workflow

By The Numbers

	10 ¹	10 ²	10 ³	104
DONAR Nodes				
Customers				
replicas/customer				
client groups/ customer				

Problem for each customer: $10^2 * 10^4 = 10^6$

Measure Traffic & Optimize Locally?

Not Accurate!

So Far

	Accurate	Efficient	Reliable
Local only	No	Yes	Yes
Central Coordinator	Yes	No	No

Decomposing Objective Function

Decomposed Local Problem For Some Node (n*)

load_i = f(prevailing load on each server + load I will impose on each server)

Share summary data w/ others (10²)

- Provably converges to global optimum
- Requires no coordination
- Reduces message passing by 10⁴

Better!

	Accurate	Efficient	Reliable
Local only	No	Yes	Yes
Central Coordinator	Yes	No	No
DONAR	Yes	Yes	Yes

Outline

• Server selection background

• Constraint-based policy interface

• Scalable optimization algorithm

• Production deployment

Production and Deployment

- Publicly deployed 24/7 since November 2009
- IP2Geo data from Quova Inc.

QUOVA

- Production use:
 - All MeasurementLab Services (incl. FCC Broadband Testing)
 - CoralCDN

MLAB CORAL

• Services around 1M DNS requests per day

Systems Challenges (See Paper!)

• Network availability Anycast with BGP

• Reliable data storage Chain-Replication with Apportioned Queries

• Secure, reliable updates Self-Certifying Update Protocol

CoralCDN Experimental Setup

Results: DONAR Curbs Volatility

Ten Minute Intervals

Results: DONAR Minimizes Distance

Conclusions

- Dynamic server selection is difficult
 - Global constraints
 - Distributed decision-making
- Services reap benefit of outsourcing to DONAR.
 - Flexible policies
 - General: Supports DNS & HTTP Proxying
 - Efficient distributed constraint optimization
- Interested in using? Contact me or visit http://www.donardns.org.

Questions?

Related Work (Academic and Industry)

Academic

Improving network measurement

- iPlane: An informationplane for distributed services H. V. Madhyastha, T. Isdal, M. Piatek, C. Dixon, T. Anderson, A. Krishnamurthy, and A. Venkataramani, "," in OSDI, Nov. 2006
- "Application Layer Anycast"

• OASIS: Anycast for Any Service

Michael J. Freedman, Karthik Lakshminarayanan, and David Mazières Proc. 3rd USENIX/ACM Symposium on Networked Systems Design and Implementation (NSDI '06) San Jose, CA, May 2006.

- Proprietary
 - Amazon Elastic Load Balancing
 - UltraDNS
 - Akamai Global Traffic Management

Doesn't [Akamai/UltraDNS/etc] Already Do This?

- Existing approaches use alternative, centralized formulations.
- Often restrict the set of nodes per-service.

 Lose benefit of large number of nodes (proxies/DNS servers/etc).