
DONAR
Decentralized Server Selection

for Cloud Services

Patrick Wendell, Princeton University

Joint work with Joe Wenjie Jiang,

Michael J. Freedman, and Jennifer Rexford

Outline

• Server selection background

• Constraint-based policy interface

• Scalable optimization algorithm

• Production deployment

User Facing Services are
Geo-Replicated

Reasoning About Server Selection

Service
Replicas

Client
Requests

Mapping
Nodes

Example: Distributed DNS

Client 1

Client C

DNS 1

DNS 2

DNS 10

Servers Auth. Nameservers

Client 2

Clients Mapping Nodes Service Replicas

DNS Resolvers

Example: HTTP Redir/Proxying

Client 1

Client C

Datacenters HTTP Proxies

Client 2

Clients Mapping Nodes Service Replicas

HTTP Clients

Proxy 1

Proxy 2

Proxy 500

Reasoning About Server Selection

Service
Replicas

Client
Requests

Mapping
Nodes

Reasoning About Server Selection

Service
Replicas

Client
Requests

Mapping
Nodes

Outsource to
DONAR

Outline

• Server selection background

• Constraint-based policy interface

• Scalable optimization algorithm

• Production deployment

Naïve Policy Choices
Load-Aware: “Round Robin”

Service
Replicas

Client
Requests

Mapping
Nodes

Naïve Policy Choices
Location-Aware: “Closest Node”

Service
Replicas

Client
Requests

Mapping
Nodes

Goal: support
complex policies

across many nodes.

Policies as Constraints

Replicas DONAR
Nodes

bandwidth_cap
= 10,000 req/m

split_ratio = 10%
allowed_dev = ± 5%

Eg. 10-Server Deployment

How to describe policy
 with constraints?

No Constraints
Equivalent to “Closest Node”

2%
6%

10%

1% 1%
7%

2%

28%

9%

35%
Requests per Replica

No Constraints
Equivalent to “Closest Node”

2%
6%

10%

1% 1%
7%

2%

28%

9%

35%
Requests per Replica

Impose 20%
Cap

Cap as Overload Protection

2%
6%

10%

1% 1%
7%

14%
20% 20% 20%

Requests per Replica

12 Hours Later…

5%

16%

29%

4% 3%

16%

3%
10% 12%

3%

Requests per Replica

“Load Balance”
(split = 10%, tolerance = 5%)

Requests per Replica

5% 5% 5% 5% 5%

15% 15% 15% 15% 15%

“Load Balance”
(split = 10%, tolerance = 5%)

Requests per Replica

5% 5% 5% 5% 5%

15% 15% 15% 15% 15%

Trade-off network proximity
& load distribution

12 Hours Later…

Requests per Replica

7%

15% 15% 15%

5%

13%

5%
10% 10%

5%

Large range of policies
by varying cap/weight

Outline

• Server selection background

• Constraint-based policy interface

• Scalable optimization algorithm

• Production deployment

Optimization:
Policy Realization

• Global LP describing “optimal” pairing

Clients: c ∈ C Nodes: n ∈ N Replica Instances: i ∈ I

Minimize network cost

min α𝒄 ∙ 𝑅𝑐𝑖 ∙ 𝑐𝑜𝑠𝑡(𝑐, 𝑖)

𝑖∈𝐼𝑐∈𝐶

Server loads within
tolerance

𝑃𝑖 −ω𝑖 ≤ 𝜀𝑖

Bandwidth caps met

𝐵𝑖 < 𝐵 ∙ 𝑃𝑖

s.t.

Optimization Workflow

Measure
Traffic

Track
Replica Set

Calculate
Optimal

Assignment

Optimization Workflow

Measure
Traffic

Track
Replica Set

Calculate
Optimal

Assignment

Per-customer!

Optimization Workflow

Measure
Traffic

Track
Replica Set

Calculate
Optimal

Assignment

Continuously!

(respond to underlying traffic)

By The Numbers

101 102

103

104

DONAR Nodes

Customers

 replicas/customer

 client groups/
 customer

Problem for each customer:
102 * 104 = 106

Measure Traffic & Optimize Locally?

Service
Replicas

Mapping
Nodes

Not Accurate!

Service
Replicas

Mapping
Nodes

Client
Requests

No one node sees
entire client population

Aggregate at Central Coordinator?

Service
Replicas

Mapping
Nodes

Aggregate at Central Coordinator?

Service
Replicas

Mapping
Nodes

Share Traffic
Measurements

(106)

Aggregate at Central Coordinator?

Service
Replicas

Mapping
Nodes

Optimize

Aggregate at Central Coordinator?

Service
Replicas

Mapping
Nodes

Return
assignments

(106)

So Far

Accurate Efficient Reliable

Local only No Yes Yes

Central
Coordinator

Yes No No

Decomposing Objective Function

min α𝒄 ∙ 𝑅𝑐𝑖 ∙ 𝑐𝑜𝑠𝑡(𝑐, 𝑖)

𝑖∈𝐼𝑐∈𝐶

 𝑠𝑛 α𝑐𝑛 ∙ 𝑅𝑛𝑐𝑖 ∙ 𝑐𝑜𝑠𝑡(𝑐, 𝑖)

𝑖∈𝐼𝑐∈𝐶𝑛∈𝑁

Traffic from c

prob of mapping c to i

cost of mapping c to i

∀ clients ∀ instances

=

∀ nodes Traffic to this node

We also decompose
constraints

(more complicated)

Decomposed Local Problem
For Some Node (n*)

min

loadi = f(prevailing load on each server +
load I will impose on each server)

∀𝑖𝑙𝑜𝑎𝑑𝑖 + 𝑠𝑛∗ α𝑐𝑛∗ ∙ 𝑅𝑛∗𝑐𝑖 ∙ 𝑐𝑜𝑠𝑡 𝑐, 𝑖

𝑖∈𝐼𝑐∈𝐶

Local distance
minimization

Global load
information

DONAR Algorithm

Service
Replicas

Mapping
Nodes

Solve local
problem

DONAR Algorithm

Service
Replicas

Mapping
Nodes

Solve local
problem

Share
summary data

w/ others
(102)

DONAR Algorithm

Service
Replicas

Mapping
Nodes

Solve local
problem

DONAR Algorithm

Service
Replicas

Mapping
Nodes

Share summary
data w/ others

(102)

DONAR Algorithm

• Provably
converges to
global optimum

• Requires no
coordination

• Reduces message
passing by 104

Service
Replicas

Mapping
Nodes

Better!

Accurate Efficient Reliable

Local only No Yes Yes

Central
Coordinator

Yes No No

DONAR Yes Yes Yes

Outline

• Server selection background

• Constraint-based policy interface

• Scalable optimization algorithm

• Production deployment

Production and Deployment

• Publicly deployed 24/7 since November 2009

• IP2Geo data from Quova Inc.

• Production use:

– All MeasurementLab Services
(incl. FCC Broadband Testing)

– CoralCDN

• Services around 1M DNS requests per day

Systems Challenges (See Paper!)

• Network availability
Anycast with BGP

• Reliable data storage
Chain-Replication with Apportioned Queries

• Secure, reliable updates
Self-Certifying Update Protocol

CoralCDN
Replicas

DONAR
Nodes

Client
Requests

CoralCDN Experimental Setup

split_weight = .1
tolerance = .02

Results: DONAR Curbs Volatility

“Closest Node”
policy

DONAR “Equal
Split” Policy

Results: DONAR Minimizes Distance

1 2 3 4 5 6 7 8 9 10

R
e

q
u

e
st

s
p

e
r

R
e

p
lic

a

Ranked Order from Closest

Minimal (Closest Node)

DONAR

Round-Robin

Conclusions

• Dynamic server selection is difficult
– Global constraints
– Distributed decision-making

• Services reap benefit of outsourcing to DONAR.

– Flexible policies
– General: Supports DNS & HTTP Proxying
– Efficient distributed constraint optimization

• Interested in using? Contact me or visit

http://www.donardns.org.

Questions?

Related Work (Academic and Industry)

• Academic
– Improving network measurement

• iPlane: An informationplane for distributed services
H. V. Madhyastha, T. Isdal, M. Piatek, C. Dixon, T. Anderson,
A. Krishnamurthy, and A. Venkataramani, “,” in OSDI, Nov. 2006

– “Application Layer Anycast”
• OASIS: Anycast for Any Service

Michael J. Freedman, Karthik Lakshminarayanan, and David Mazières
Proc. 3rd USENIX/ACM Symposium on Networked Systems Design and Implementation
(NSDI '06) San Jose, CA, May 2006.

• Proprietary

– Amazon Elastic Load Balancing
– UltraDNS
– Akamai Global Traffic Management

http://www.usenix.org/events/nsdi06/

Doesn’t [Akamai/UltraDNS/etc]
Already Do This?

• Existing approaches use alternative,
centralized formulations.

• Often restrict the set of nodes per-service.

• Lose benefit of large number of nodes
(proxies/DNS servers/etc).

