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Abstract
Memory- and type-safe languages promise to eliminate

entire classes of systems vulnerabilities by construction. In
practice, though, even clean-slate systems often need to incor-
porate libraries written in other languages with fewer safety
guarantees. Because these interactions threaten the soundness
of safe languages, they can reintroduce the exact vulnerabili-
ties that safe languages prevent in the first place.

This paper presents Omniglot: the first framework to effi-
ciently uphold safety and soundness of Rust in the presence
of unmodified and untrusted foreign libraries. Omniglot fa-
cilitates interactions with foreign code by integrating with a
memory isolation primitive and validation infrastructure, and
avoids expensive operations such as copying or serialization.

We implement Omniglot for two systems: we use it to inte-
grate kernel components in a highly-constrained embedded
operating system kernel, as well as to interface with conven-
tional Linux userspace libraries. Omniglot performs com-
parably to approaches that deliver weaker guarantees and
significantly better than those with similar safety guarantees.

1 Introduction

Systems built using type-safe and memory-safe program-
ming languages are safer, more reliable, and more secure
than their unsafe counterparts. Languages like Swift, Go, and
Rust promise to eliminate entire classes of bugs by construc-
tion. While the advantages of memory and type safety have
been understood for decades [5, 15], recent advances in mak-
ing safe languages more practical, along with encouragement
from government agencies [48], have fostered their adoption
in real, practical systems by both researchers [6, 21, 30, 31]
and practitioners [7, 9, 47].

At the same time, real-world systems often require incorpo-
rating components written in several languages. As legacy and
new systems evolve to use newer, safer languages [7, 9], both
old and new languages must co-exist, potentially for years.
Components such as filesystems, networking stacks, and de-
vice drivers have been fine-tuned over decades by scores of

engineers. Pragmatic development does not immediately dis-
card such thoroughly tested code but incrementally replaces
it with safe languages when new features or complex fixes
would otherwise be required.

Unfortunately, integrating foreign libraries into type-safe
programs can re-introduce the exact vulnerabilities safe lan-
guages eliminate. When foreign code is invoked, it runs in the
same address space and with the same privileges as the host
language. A bug in a foreign library, such as the infamous
OpenSSL Heartbleed vulnerability [39], can arbitrarily vio-
late the safety of the host language by, for example, accessing
memory that the host language assumed was private.

Recent contributions propose isolating foreign code in sep-
arate protection domains [4, 16, 29, 35]. Unfortunately, mem-
ory isolation alone is insufficient to maintain safety. Differ-
ences in semantics across languages mean that even inter-
actions with internally correct foreign libraries—ones that
operate only on sandboxed memory—may violate safety in
subtle ways. For example, two languages may differ in their
restrictions on pointer aliasing and corresponding types may
have subtly different memory layouts or permissible values.
Manually enforcing these invariants and translating types
between different languages is error prone and endangers se-
curity and reliability [25]. Instead, we need a safe Foreign
Function Interface (FFI) that maintains memory safety as well
as all other language invariants.

We present Omniglot, the first framework to efficiently
maintain all of Rust’s safety-critical language invariants in
the presence of foreign code. Rather than expose foreign func-
tions directly to the host program, Omniglot invokes foreign
functions through a memory sandbox and wraps returned val-
ues and shared memory in special types that ensure host code
only uses foreign objects once they are validated to adhere to
the host language’s requirements. By designing a safe FFI us-
ing these types, in contrast to prior work, Omniglot maintains
both memory and type safety of the host program. Impor-
tantly, Omniglot does so while avoiding expensive operations
such as copying or (de)serialization across the FFI, which
retains the efficiency of raw, unchecked FFI transitions.



Our implementation of Omniglot for the Rust programming
language works with arbitrary foreign libraries and with any
memory isolation mechanism that meets certain common cri-
teria (Section 4.2). We implement Omniglot for use in a Rust
operating system kernel using RISC-V’s Physical Memory
Protection (PMP) and in Linux userspace applications using
x86 Memory Protection Keys (MPK).

Finally, we modify the widely used FFI binding generator
for Rust, rust-bindgen, to generate foreign library bindings
for Omniglot. Our evaluation shows that this allows develop-
ers to effectively use Omniglot in both kernels and userspace
programs for a variety of practical libraries, such as cryptog-
raphy, compression, image decoding, filesystem and TCP/IP
networking. Omniglot has negligible overhead compared to
memory isolation alone, practical overhead compared to an
unchecked FFI, and performs significantly better than related
work that copies and (de)serializes shared data.

2 Background & Motivation

Many of the safety advances in modern systems program-
ming languages are rooted in their strict enforcement of
memory and type safety. This enforcement allows these lan-
guages to leave out runtime-checks otherwise required in
unsafe languages. For example, whereas a C string (const
char *) may contain arbitrary 8 bit values, Rust strings (str)
are guaranteed at compile-time to include only UTF-8 code-
points [40]. However, safe languages’ reliance on such prop-
erties makes their enforcement critical. A single, subtle vio-
lation of memory safety, type safety, or other important in-
variants can lead to arbitrary undefined behavior and have
significant implications for security and reliability.

Unfortunately, current tools used to facilitate interactions
between languages do not capture many of these invariants.
This deficiency means that all interactions with foreign code
must be presumed unsafe. Instead, these tools place the proof
burden of safety onto the developer who has to verify not
only that foreign code is correct, but also that any interactions
with this code maintain both the host and guest (foreign)
language’s invariants.

In this section, we show how current cross-language bind-
ings insufficiently capture language invariants and illustrate
how this can violate Rust’s safety properties.

2.1 Cross-Language Interactions
Code written in different programming languages can interact
through a Foreign Function Interface (FFI). This interface
allows one language to invoke foreign language functions by
emulating the Application Binary Interface (ABI) and calling
conventions of the foreign language. As it is infeasible to
support the calling conventions of every other language, many
programming languages feature support for the C ABI as
a universal, intermediate interface to facilitate interactions

crypt.h:

1 bool aes_encrypt(
2 const uint8_t *key, uint8_t *src,
3 uint8_t **const dst, size_t len, bool in_place);

crypt.rs:

1 extern "C" {
2 // Implicitly marked as `unsafe`:
3 pub fn aes_encrypt(
4 key: *const u8, src: *mut u8,
5 dst: *mut *const u8, len: usize,
6 in_place: bool) -> bool;
7 }

Listing 1: Simplified Rust bindings for a C header file
crypt.h as generated by rust-bindgen. The Rust binding
is wrapped in an extern "C" block and uses raw pointers
instead of Rust references.

between high-level languages. As we will see throughout this
section, the C ABI encodes virtually no assumptions about
a language’s properties such as its memory model, which
values are valid for a given type, and synchronization behavior.
While this flexibility makes the C ABI useful to connect
languages that differ in these properties, it also places a heavy
burden on developers to maintain correctness across FFIs.

Rust developers can use the rust-bindgen1 tool to auto-
matically generate a set of Rust bindings from a C header file.
Listing 1 shows a C function signature and its correspond-
ing Rust binding function as generated by rust-bindgen.
The extern "C" tells the Rust compiler to invoke symbols
using the C ABI. External function definitions are automat-
ically tagged as unsafe—this attribute indicates that the
Rust compiler cannot reason about the safety of this func-
tion and instead shifts the burden of proof to the developer.
Consequently, developers must surround the call-sites of such
functions with an unsafe block promising to the compiler
that they verified the safety implications of the function call.
For instance, Listing 2 shows an attempt at writing a safe
wrapper around the foreign function of Listing 1.

Throughout this section we use the function aes_encrypt
in Listing 1 as a running example. This function takes an
encryption key and a src buffer with unencrypted data. De-
pending on the value of in_place, it can either encrypt data
in-place, overwriting the contents of src, or by allocating a
new buffer. For both modes, dst will be set to a pointer to the
encrypted buffer.

2.2 Memory Safety
Guest (foreign) code has unrestricted access to the host code’s
memory, even when not explicitly provided to a foreign func-
tion. This is a problem. In Listing 2, if Vec src’s internal
length attribute were stored one memory word before the

1https://github.com/rust-lang/rust-bindgen

https://github.com/rust-lang/rust-bindgen


1 pub enum Message<'a> {
2 Encrypted(bool, &'a [u8]),
3 Unencrypted(CString),
4 }
5

6 pub fn enc(src: &mut Vec<u8>) -> Message<'_> {
7 let mut dst: *const u8 = ptr::null();
8 unsafe {
9 // Calling aes_encrypt from Listing 1

10 let res = aes_encrypt(KEY, src.as_mut_ptr(),
11 &mut dst, src.len(), IN_PLACE);
12 Message::Encrypted(res,
13 slice::from_raw_parts(dst, src.len()))
14 }
15 }

Listing 2: A Rust wrapper around the C library function
aes_encrypt from Listing 1, which returns a bool value
to indicate whether the encrypt-operation succeeded. The
Rust program exposes a function enc that takes a byte-array
and uses the C library function to encrypt its contents. It re-
turns the Encrypted variant of the enum Message type, a
tagged union. This variant includes a buffer constructed from
the pointer written to dst and the encryption-operation’s re-
sult. Can you spot the safety violations?

buffer’s contents, then a simple off-by-one error in the C func-
tion could overwrite this value (at address src - 1). This
can then cause Rust code to believe that this array is larger
than its actual underlying allocation.

In Rust, Vec is an instance of a safe abstraction. It provides
an API through which the programmer is unable to violate
Rust’s safety invariants. When changing the internal length
parameter, the C function prevents this API from living up to
its promise, as the Vec may overflow its allocation.

Rust prevents such unsoundness by only providing func-
tions with references to valid Vec instances. Unlike the raw
pointers required by the unchecked C ABI, references do not
allow a developer to perform arbitrary reads and writes to their
memory. Instead, references are well-typed, and all accesses
to their memory must be made through the type’s API.

To maintain memory safety and thus soundness—crucial
to security and integrity—interactions with foreign code must
uphold an equivalent set of restrictions. In practice, for the
example in Listings 1 and 2 this means that the aes_encrypt
function, being passed a pointer to the src vector, must only
read and modify the user-accessible part of the Vec data struc-
ture. The caller must, in turn, ensure that the vector outlives
this function call.

2.3 Aliasing and Mutability

Apart from basic memory safety, programming languages
often have additional, high-level invariants they require for
correctness and optimizations. A prominent example of this

enum Message:
0 4 8

Encrypted

bool (0 or 1)
Slice Pointer Length1 Write:

{

Unencrypted

2
CString Pointer2 Read:

{

Figure 1: Memory layout of the enum Message type. Rust
encodes the bool value of the Message::Encrypted variant
into the same memory location as the enumeration’s active
variant (called niche filling). When 1 writing an Encrypted
value with a slice and an invalid bool value (e.g., 2), the
value may be 2 misinterpreted as a different variant, such as
Unencrypted and a CString.

are Rust’s rules around aliasing and mutability. McCormack
et al. explain these rules in great detail [25]; for brevity we
illustrate them through the example of Listing 1.

Such an idiomatic C function interface can easily cause
issues when paired with Rust’s restriction on aliasing XOR
mutability. This rule governs that at any time a value may
either have multiple immutable shared references, or a single
mutable unique reference, and never both. The enc wrapper
of Listing 2 violates this rule: it invokes aes_encrypt with
a src pointer obtained from a mutable reference to the data
contained in the src vector (line 10). To pass on the encrypted
data as part of the Message enum, it creates an immutable ref-
erence to this buffer (a slice) from the *dst pointer (line 13).
However, when aes_encrypt is set to perform an in-place
operation, *dst will be pointed to the exact same memory as
src. Thus, creating an immutable reference from *dst is un-
sound while the original mutable reference for src still exists.
Therefore, developers must reason about the provenance of
pointers as they flow through both host and guest (foreign)
code—a task that is difficult in practice, infeasible without
source code, and where getting it wrong is commonplace [25]
and leads to critical security vulnerabilities [1].

2.4 Type Safety and Valid Values

Finally, safe languages rely on type safety to maintain safety-
invariants at runtime. In Rust, examples of this are the UTF-8
validity requirement for strings mentioned previously or the
Vec abstraction shown in Section 2.2. In addition to these
high-level invariants, Rust places restrictions onto the valid
values of primitives and algebraic data types. For example,
the bool primitive is a type occupying one byte of mem-
ory, whose only valid values are 0 or 1. Treating memory
containing any other value as a bool is thus unsound.

The implications of this are not solely of theoretical inter-
est, though, as is apparent by surprising runtime behavior of
Listing 2 when this invariant is violated: it may crash with



a segmentation fault!2 This is because Rust performs an
optimization known as niche filling. Since Rust trusts that
the bool type will only ever contain 0 or 1, it encodes the
value of this type directly into the discriminant of the enum
Message type, and represents the Unencrypted variant with
a discriminant3 of value 2. Figure 1 illustrates the memory
layout of this type. However, if we were to violate the afore-
mentioned validity restriction of bool we can construct a
Message::Encrypted instance that, when read back, will
be misinterpreted as an Unencrypted variant instead. This
is not farfetched. For example, in many C implementations,
a bool is typedefed as an int, and hence may contain
values outside of 0 or 1. Because Rust assumes the returned
bool is valid (0 or 1), it simply copies its memory into the
enum Message’s discriminant and performs no further val-
idations. As such, the memory occupied by the slice (&'a
[u8]) member in Figure 1 will erroneously be interpreted as
an element of type CString, leading to undefined behavior
and a soundness violation in theory, and a use-after-free or
out-of-bounds access in practice.

3 The Omniglot Approach

Interactions with foreign languages through Rust’s existing
unsafe FFI can trivially reintroduce the exact security and
reliability vulnerabilities that safe Rust eliminates. Through
this FFI, foreign code has unrestricted access to host memory.
Moreover, even with coarse grained memory access restric-
tions, a foreign library could still introduce vulnerabilities due
to subtle differences in language semantics.

Omniglot provides a safe interface for Rust programs to
interact with foreign libraries. This is a high bar. Safety in
Rust relies on soundness, i.e., interactions with a foreign li-
brary must not introduce any undefined behavior [44]. This
includes4 an absence of data races, dangling or misaligned
accesses, aliasing violations, producing invalid values, etc.

Unfortunately, reasoning about whether a foreign library
violates any of Rust’s soundness conditions is hard. One con-
ventionally achieves this by modeling the entire program and
ensuring that the host code, foreign code, and their composi-
tion is sound. While the Rust compiler validates soundness of
safe Rust code, it cannot do so for interactions with foreign
code. Despite this difficulty, maintaining soundness is vital5

to leverage the safety guarantees of type-safe languages.

2In practice, compiler optimizations happen to often avoid faults in simple
cases like bool and other enum types with a 1 bit discriminant. For brevity,
we elide an example that faults with a recent Rust compiler toolchain.

3The actual value chosen by the Rust compiler is not specified; at the time
of writing it happens to use 2 for 32 bit platforms.

4Rust defines undefined behavior through its Rust Reference [41], Unsafe
Code Guidelines Reference [44], and Rustonomicon [42]. In the absence of
a formal model of Rust’s semantics there is no exhaustive list of defined or
undefined behavior; as such we design Omniglot against the currently known
invariants.

5The Rust Unsafe Code Guidelines Reference states more bluntly that in

Rust

unsafe f();

f ();

Foreign Library

bool f(){
return
rand_u8();

}

extern "C" fn f() -> bool

Omniglot Wrapper

fn f () -> Result<bool> {
let b: ?bool = f′();
if is_valid_bool(b) {
return Ok(b.unwrap());

} else {
return Err; }

extern "C"
fn f′()
-> ?bool

Figure 2: Omniglot interposes on interactions between Rust
and foreign code. In this example, Omniglot models a foreign
function through a weaker function binding fn f'(), and
restores the original function’s return type through a runtime
check in the wrapper fn f ().

Omniglot does not model the entire program, and instead
takes a different approach. We argue that it is sufficient to
reason about an execution of the foreign library, as opposed
to proving the soundness of the composition of host and for-
eign code for all such executions. Figure 2 demonstrates this
approach: f() is a foreign function that would violate Rust’s
soundness through a naïve FFI binding. When a Rust program
calls this function, the compiler assumes certain invariants
hold across the foreign function’s execution (we enumerate
this set of invariants below). In this example, f() violates one
such invariant by returning a potentially invalid value for the
Rust bool type (e.g., the number 2).

Nonetheless, Omniglot can provide a safe encapsulation of
this foreign function, f . Recall that Rust’s invariants for a
given value depend on its ascribed type. The problem with
the example of Figure 2 arises from the fact that f() is said
to return a value of the Rust type bool. Omniglot instead
produces a foreign function binding f′. This binding returns
a different type, ?bool, which is not subject to those same
restrictions. As such, calling f′ does not endanger soundness.

While the foreign function binding f′ is sound, it is not very
useful. Because ?bool is not subject to the same invariants as
Rust’s regular bool type, we also give up on the guarantees
that follow from these invariants. Omniglot re-establishes
these invariants through a set of runtime checks. In the above
example, Omniglot tests whether the returned value is indeed
a valid bool and, if so, casts it to this more useful type. This
allows Omniglot to safely expose an encapsulated function
f with the same interface as its unsound counterpart, f.

This example shows how we reason about type safety in-
variants to develop Omniglot’s safe foreign function interface.
In addition to type safety, there are also memory safety, alias-
ing and mutability, and concurrency-related invariants. Over

the presence of undefined behavior, “the program produced by the compiler
is essentially garbage.” [44]



the remainder of section, we describe these remaining invari-
ants, and show how we can uphold them in a similar way.

Memory Safety. We adopt Dhurjati et al.’s definition of mem-
ory safety: a software entity is memory-safe if it only refer-
ences memory allocated by or for that entity [10]. As this is
ultimately a language-specific property, strictly enforcing it
across an FFI is difficult. For instance, moving an object—a
common operation in Rust—has no equivalent counterpart in
a language like C with no defined ownership model.

However, Omniglot only needs to retain the host language’s
memory safety invariants, a more tractable problem. By di-
viding each language’s allocations into a distinct set of mem-
ory regions, where each side is restricted from accessing the
other’s allocations, we ensure that any memory safety issues
within foreign code cannot impact the surrounding Rust pro-
gram. Memory isolation techniques, including memory pro-
tection, virtual memory, or software fault isolation, are well
suited to this purpose.

Unfortunately, such strict isolation also prevents memory
sharing with foreign libraries. To enable sharing, Omniglot
allows Rust to dereference pointers into foreign memory if
and only if the object they reference is wholly contained inside
the foreign library’s valid memory regions.

Aliasing and Mutability. Rust uses strict aliasing rules to
statically reason about which references can be used to safely
mutate or read memory. While unique, mutable references
can never be aliased, shared (aliased) references must never
be modified (a rule known as aliasing XOR mutability).

This is problematic in the presence of foreign code: for
instance, a foreign function may return references to the same
memory multiple times. Since we cannot track pointer prove-
nance through foreign memory or code, we must conserva-
tively assume that all references derived from such pointers
are mutably aliased with each other. The only way to safely
support mutable aliasing in Rust is through mutual exclusion.
Section 4.4 show how Omniglot introduces a zero-cost and
deadlock-free mutual exclusion mechanism for references
into foreign memory.

Type Safety. Saraswat defines a language as type-safe if “the
only operations that can be performed on data in the language
are those sanctioned by the type of the data.” [36] Violating
this property can break safe abstractions (Section 2.2), and
introduce arbitrary undefined behavior.

Even if a foreign library is itself written using a type-safe
language, its types are likely not identical in either semantics
or representation to their counterparts in Rust. Indeed, trans-
lating objects between the type systems of two languages is
an active area of research [32, 33, 34]. Omniglot must there-
fore assume that objects passed to or obtained from a foreign
function do not preserve Rust’s notion of type safety.

As illustrated by the example in Figure 2, Omniglot con-
siders objects returned from a foreign library or in foreign
memory tainted and ascribes them a special “any”-type. Om-

niglot can downcast such objects to a more useful type only
after validating them. Specifically, an object is considered
valid if its underlying size, alignment, bit-pattern, and other
high-level invariants match those of an object of the same type
created in safe Rust. For example, a well-aligned 32 bit object
is a valid char, so long as it contains a valid, non-surrogate
Unicode code point [43].

Certain Rust types carry higher-level invariants that cannot
be validated solely by observing their size, alignment, and
underlying bit-pattern. Examples of this are Rust references,
which impose additional restrictions on their provenance and
lifetimes, or typestates [2, 37]. Omniglot can never safely
validate these types once written into foreign memory. De-
velopers can instead pass symbolic representations of these
objects to foreign code, referring back to a copy in memory
owned by Rust.

Concurrency. Many of Rust’s invariants pertain to the under-
lying memory state of its objects. However, when this state
changes after being validated, such as through concurrent
modifications by foreign code, these invariants may no longer
hold, introducing unsoundness.

Thus, Omniglot requires that foreign code not modify cer-
tain values without explicit coordination with Rust. This can
be accomplished through synchronization and memory iso-
lation primitives, or by ensuring that foreign code does not
execute concurrently with Rust.

4 Design

In this section we present the design of Omniglot, a frame-
work to provide a safe interface to interact with foreign code.
Omniglot’s workflow is similar to that of Rust’s conventional
unsafe FFI with rust-bindgen, as described in Section 2.1:
for a set of C header files, Omniglot generates a set of safe
FFI bindings that developers can use to manipulate foreign
data types and call into foreign functions.

To safely interact with an untrusted foreign library, Om-
niglot combines a set of inter-operating mechanisms. It fea-
tures a pluggable runtime component (described in Sec-
tion 4.2) responsible for loading libraries into a sandbox and
isolating their memory. Omniglot further features a set of
reference and validation types (Section 4.3) that capture and
progressively validate the aliasing and type safety invariants
described in Section 3.

However, simply applying the approach described in the
previous section is not sufficient: interactions between the
Omniglot runtime and its types can violate invariants that
Omniglot’s reference and validation types rely on. Thus, in
Section 4.4 we introduce a mechanism called scopes that
captures and enforces an additional set of temporal invariants
to uphold the required invariants. Scopes are zero-cost, are
enforced at compile-time, and statically reject code that would
violate these invariants.



4.1 Threat Model

Omniglot maintains Rust’s soundness across interactions with
arbitrary, untrusted, and adverserial foreign code.

To achieve this goal, we assume that there is an available
hardware, OS-provided, or software-based memory isolation
primitive that provides strong memory protection—i.e. it can
prevent a foreign library from accessing all but explicitly
permitted memory regions.

Furthermore, we assume that there are OS or hardware
primitives that allow restricting when foreign code can run. In
particular, these primitives must be able to limit the ability of
a foreign library to execute concurrently with host code, such
as by preventing it from spawning and running threads that
continue to run in the background, or executing in response
to asynchronous signals.

We also assume that the Omniglot library, runtime imple-
mentation, Omniglot’s bindings generation tool, as well as
the Rust type-checker and compiler are correct. Omniglot
provides a set of interfaces and types that safe Rust cannot
use incorrectly. Thus, safe Rust code of the host application
does not need to be trusted. However, any code that uses
Rust’s unsafe feature to circumvent restrictions imposed
by Omniglot through the type system is considered trusted.

Omniglot can maintain Rust’s soundness across interac-
tions with adverserial libraries when using a strong Omniglot
runtime—a runtime enforcing the above assumptions using
strong primitives for memory isolation and restricting concur-
rency. We present an implementation of a strong runtime in
Section 5.1. However, when these assumptions are violated,
Omniglot’s threat model changes. For example, a weak run-
time may not be able to entirely prevent a foreign library from
circumventing memory protection (e.g., through system calls),
or restrict its access to concurrency primitives. In this case,
Omniglot cannot safely run fully untrusted and adverserial for-
eign libraries. Instead, developers must trust that Omniglot’s
requirements concerning memory isolation and concurrency
are upheld by the foreign library. Section 5.2 describes such a
weak Omniglot runtime and further discusses its threat model
implications.

Omniglot does not guarantee application-level correctness
properties. For example, while it guarantees that a bool re-
turned from a foreign function is either true or false,
it does not guarantee that the foreign library computed this
value correctly. Furthermore, Omniglot does not protect for-
eign code from operations issued by host code: for example,
the host program may write to arbitary locations in foreign
code’s memory, including in ways that can cause foreign
code to misbehave. However, assuming a strong Omniglot
runtime, such misbehavior cannot compromise the host pro-
gram’s soundness.

Finally, Omniglot does not address timing and other side-
channel attacks that might allow foreign code to infer the
contents of host program memory it cannot access directly.

4.2 Sandboxing Foreign Libraries

Omniglot divides memory into regions owned exclusively by
Rust, and regions delegated to foreign library instances. It uses
a memory isolation primitive to uphold the host’s memory
safety when executing foreign libraries by restricting them to
only be able to access their own, sandboxed memory regions.

As these memory isolation primitives vary between differ-
ent architectures and platforms, Omniglot features a set of
platform-specific runtimes. A runtime offers an interface to
integrate with the core Omniglot framework. For instance, a
runtime allows Omniglot and developers to to interact with
a system’s memory isolation primitive. It also imposes other
restrictions on foreign code like limiting its access to con-
currency primitives, to prevent untrusted foreign code from
invalidating Rust’s invariants after they have been validated
by Omniglot. Omniglot’s runtimes expose the following (sim-
plified) API which host code uses to interact with foreign
code:
OGRt::new(library) Constructs a new runtime instance

and loads library into the sandbox.
rt.stack_alloc(size, closure) Allocates size bytes

on the foreign library’s stack, and invokes a closure dur-
ing which this allocation is valid. It restores the previous
foreign stack pointer when the closure returns.

rt.setup_callback(callback, closure) Prepares a
callback that foreign code can trigger, and invokes a closure
during which this callback is valid. This function creates
an address for which, whenever foreign code jumps to it,
the Omniglot runtime will execute callback.

rt.invoke Invokes a foreign function within the memory
isolation sandbox. After invoke returns, the runtime guar-
antees that no foreign threads are running. This symbol
is not called directly, and instead used by a trampolining
mechanism described in Section 5.3.

The Omniglot FFI bindings for a foreign library are portable
across multiple runtime implementations. These bindings
resemble Rust’s unsafe FFI interface, but call out to the
Omniglot runtime instead of directly invoking foreign code.
Nonetheless, Omniglot requires developers using a foreign
library (or those writing Rust wrappers) to transform their
code, for instance by using the above methods for allocating
memory or callbacks that will be used by foreign code. When
a foreign library attempts to access an allocation outside of
its sandbox, or invokes a host callback not prepared though
setup_callback, it triggers a fault in the memory isolation
mechanism, which the Omniglot runtime catches and exposes
as an Err value returned to Rust by invoke.

4.3 Communication between Rust and Foreign
Code

Omniglot divides memory into mutually-exclusive regions
for the host program and foreign code: it uses a memory iso-



*mut T OGMutRef<T> OGVal<T>

upgrade() validate()

&T

Figure 3: Omniglot captures arbitrary addresses in foreign
memory as raw pointers (*mut T). The upgrade and validate
methods transform a potentially invalid reference into write-
able (OGMutRef<T>) and readable (OGVal<T>) wrappers.

lation mechanism to prevent foreign code from changing host
memory. Furthermore, safe Rust is incapable of constructing
arbitary references into foreign memory. While this strict divi-
sion trivially upholds memory safety, it also prevents efficient
transfer of data between guest (foreign) and host code.

Omniglot cannot allow foreign libraries to access mem-
ory belonging to the host program (Rust), as unrestricted,
arbitrary access of foreign code to Rust’s memory can break
its invariants (see Section 3). Instead, Omniglot provides a
mechanism that allows host code to allocate and access values
in foreign memory. This is sufficient to allow host code to
communicate with foreign libraries, while at the same time
making it feasible to maintain Rust’s soundness.

Using the runtime interface, host code can allocate ob-
jects in memory accessible to a foreign library (e.g. using
rt.stack_alloc). Depending on the runtime, these alloca-
tions can happen on the foreign library’s stack, a separate
stack dedicated for such host-language allocations, or using
heap memory dedicated to foreign code. These operations
alone have no impact on the safety of the host program—their
effects are limited to the foreign library’s memory regions.

However, for Rust to safely dereference or modify memory
belonging to a foreign library, we must ensure that it is con-
tained within a valid foreign allocation, and that it represents a
valid instance of its ascribed type. In this section we introduce
a set of types following the typestate paradigm [2, 37] that
capture validation operations and offer a safe API to access
data shared with foreign code.

Figure 3 illustrates these reference and validation types.
The first type, a raw pointer, forms the base of Omniglot’s type
infrastructure. It can capture arbitrary addresses in foreign
memory. This pointer does not have to maintain any invari-
ants; it may be dangling, misaligned, or alias host memory.
Thus, safe Rust is not able to dereference it.

The second type, OGMutRef<T>, expresses pointers that
refer to an active, well-aligned foreign memory allocation
of sufficient size for a type T. It can be obtained through
upgrading a raw pointer and checking the aforementioned
invariants at runtime, by checking against the runtime-tracked
set of memory regions dedicated to the foreign library. An
OGMutRef<T> represents a useful intermediate type: when
considering our model of memory safety in the presence of
foreign code from Section 3, because this type must point into

a valid allocation of foreign memory, writing to it does not
violate memory safety.

However, Rust’s limitations around mutable aliasing com-
plicate this: in general, an aliased Rust reference must not be
modified. As shown in Section 3, given that an OGMutRef<T>
can be constructed from an arbitrary raw pointer supplied by
foreign code, we cannot track its provenance and must instead
assume that it is (partially) aliased by other references. To
avoid violating Rust’s aliasing constraints while still allowing
OGMutRef<T> references to be modified, Omniglot opts out
of Rust’s strict aliasing model for this reference type, by rep-
resenting it as the composition of two of Rust’s standard
library types: &UnsafeCell<MaybeUninit<T>>. Whereas
MaybeUninit prevents the Rust compiler from making as-
sumptions about the validity of values stored behind this refer-
ence, UnsafeCell allows values to be mutably aliased. How-
ever, an UnsafeCell annotation can only be used as long
as every other reference to this value also carries this same
annotation. As a result, Omniglot must ensure that no regular
Rust references (ones not wrapped in such an UnsafeCell)
point into foreign memory. This holds by construction, as
foreign allocations are disjoint from any of Rust’s allocations.

A final type, OGVal<T> captures pointers that refer to mem-
ory which contains an actual, dereferenceable instance of
type T. This memory may be safely read and interpreted as
its ascribed type without any risk to the soundness of the host
program. Host code can attempt to validate an OGMutRef<T>
into an OGVal<T> by inspecting its underlying bit-pattern, as
described in Section 3. Omniglot performs this validation
using a Rust trait, and provides implementations for many of
Rust’s primitive types. For any types that cannot be validated
solely by inspecting their size, alignment, and bit-pattern, this
trait is not implemented.

Omniglot’s restrictions on concurrency also follow from
the above types and reflect a fundamental constraint: so long
as any validated Rust references to foreign memory exist, they
must retain the invariants described in Section 3. However, if
foreign code were to execute concurrently with host code, it
could break these invariants at any time, such as by arbitrarily
modifying any memory it can access. If the host program
would access a foreign library instance’s memory concur-
rently with that instance’s execution, then the above valida-
tions could be subject to a time-of-check to time-of-use (TOC-
TOU) bug: after performing an upgrade or validate operation
in Rust, foreign code may change its available memory alloca-
tions or write invalid values to previously validated memory
locations. This would then invalidate the invariants gained
in the upgrade and validate typestate transitions. Therefore,
Omniglot requires that host code does not hold references
into a foreign library instance’s memory concurrently with
that instance’s execution. Omniglot’s architecture can support
running multiple Rust threads, as well as running multiple
instances of foreign libraries concurrently.



OGRt::new() yields a unique allocation and access scope per library:
OGRt::new(library) -> (Rt, AllocScope, AccessScope)

Allocation scopes prevent dangling references:
ptr::upgrade(&AllocScope<'l>) -> OGMutRef<'l>
OGRt::stack_alloc(&'a mut AllocScope<'l>,

Fn(&'b mut AllocScope<'m>))
Access scopes prevent invalidating references through writes:
OGMutRef::write(val: T, &mut AccessScope)
OGMutRef::validate(&'a AccessScope) -> OGVal<'a>

invoke may write to memory and modify allocations in callbacks:
OGRt::invoke(&mut AllocScope, &mut AccessScope)

Table 1: Interactions between Omniglot’s runtime, reference
and validation type APIs, and its allocation- and access-
scopes: by binding OGMutRef references to their originating
allocation scope, we eliminate dangling references. Validated
OGVal references are further bound to an access scope, which
expires upon foreign function execution or when foreign mem-
ory is modified.

4.4 Temporal Constraints

Omniglot’s reference and validation types allow a developer
to safely read and write foreign memory, as long as their
underlying invariants hold (Section 3). However, even with-
out concurrency, seemingly unrelated operations can affect
these invariants: for example, writing to an OGMutRef may
modify foreign memory previously validated into an OGVal.
Revoking foreign allocations may cause reference or valida-
tion types to be dangling. And invoking a foreign function
can both modify memory, and trigger a callback which may
do any of the above.

In other words, the invariants of Omniglot’s reference and
validation types must be temporally constrained. These con-
straints may be quite subtle, as we can see in the following
example: a foreign library yields two pointers, referencing
overlapping memory that the caller interprets as an integer and
a boolean respectively. The caller upgrades these pointers to
OGMutRefs and validates one into an OGVal<bool>. Then, if
both pointers alias each other, writing a non-boolean value to
the integer reference would invalidate the invariants checked
when creating the OGVal<bool>. As such, the boolean ref-
erence must not exist beyond the write to its aliasing integer
reference. Similarly, any of these references may become
invalid when Omniglot revokes foreign memory.

We could enforce these temporal constraints through mu-
tual exclusion by using a read-write lock. Assume that we
have a single lock for reading and writing a given library’s
memory. Then, calling OGMutRef::validate to produce an
OGVal<T> could acquire a read-lock internally. This lock
would be released when the resulting OGVal<T> goes out
of scope. Additionally, both operations that can modify for-
eign memory, OGMutRef::write and OGRt::invoke, will
acquire a corresponding write lock. Under this model, it will
be impossible to retain an OGVal<T> across any modification

of this memory—doing so will result in a deadlock.
Similarly, a read-write lock for each foreign allocation can

protect upgraded references (both OGMutRef and OGVal) from
memory allocation and revocation operations invalidating
them. In this model, operations which may revoke memory
(ptr::stack_alloc and OGRt::invoke) take a write-lock
on the relevant memory allocations. Conversely, upgrading
a pointer to create an OGMutRef requires a read-lock, released
only when it goes out of scope. This would ensure that, if there
are any outstanding references to an allocation, an attempt to
revoke the allocation would result in a deadlock.

Unfortunately, dynamic locks do not reject incorrect code
at compile time and thus place an undue burden on devel-
opers to ensure their code is deadlock-free. Such dynamic
locks are also unnecessary. Given Omniglot’s restrictions on
concurrency—namely that Rust code does not hold references
into a foreign library instance’s memory concurrently with
that instance’s execution—we can statically enforce mutual
exclusion by reasoning about data-flow patterns in programs.
We design a zero-cost, compile-time enforced, static, and
single-threaded locking mechanism based on lexical scopes.
Omniglot uses these scopes in tandem with Rust’s restriction
on aliasing XOR mutability to implement a form of read-
write mutual exclusion, and enforces it through Rust’s borrow
checker.

Table 1 describes Omniglot’s API using scope-based exclu-
sion. Creating a new, unique, instance of a foreign library us-
ing OGRt::new yields an AllocScope and an AccessScope—
two branded types [19, 50] that are uniquely bound to a partic-
ular call to the constructor. Unique (&mut) borrows of these
values correspond to obtaining a write-lock, and a shared (&)
borrow corresponds to obtaining a read-lock. Rust prevents
concurrent unique and shared borrows of the same scope.
Omniglot’s reference types carry a lifetime derived from the
lifetime of these borrows, ensuring that they cannot outlive
the AccessScopes and AllocScopes in which they have been
created.

Omniglot uses these scopes to enforce its temporal con-
straints on OGMutRef and OGVal types. When an OGMutRef
is validated, it captures a shared borrow of an AccessScope
for an anonymous lifetime 'a. It produces an OGVal<'a>
that captures this lifetime. As long as this new value ex-
ists, Omniglot statically prevents calling any functions that
could invalidate its invariants, such as OGMutRef::write, by
requiring these functions to take a unique reference to the
AccessScope.

We use a similar approach to maintain the constraints for
OGMutRef. Upgrading a pointer captures a shared reference
to an AllocScope, while any operations that may revoke
memory, and thus endanger the invariants of this type, take a
unique AllocScope reference.

In practice, Omniglot can be slightly more permissive about
letting OGMutRefs outlive certain revocations of memory. By
combining an allocation with its corresponding revocation



into a single function—stack_alloc—Omniglot allows ref-
erences that were created before this allocation to also outlive
its revocation. In other words, while Omniglot must prevent
any reference created in a call to stack_alloc from escap-
ing its inner closure, those created in outer scopes can re-
main live. Omniglot does so by separating the lifetime that
an AllocScope is active for ('a), from the lifetime of its
underlying memory allocation ('l), as shown in Table 1.

Finally, invoking a foreign function can both modify mem-
ory, and trigger a callback that can revoke allocations, and
thus captures unique references to both allocation and access
scopes.

4.5 Omniglot API Walkthrough

Listing 3 illustrates how all of Omniglot’s mechanisms
interact to provide a safe interface to an arbitrary, untrusted
foreign library. On line 3, this example loads a fictional com-
pression library (libcompress.so) into an Omniglot run-
time. Constructing a runtime and loading a library yields four
return values: a runtime object rt exposing the API shown in
Section 4.2, a library shim lib featuring wrapper methods for
all foreign library functions, and allocation and access scope
marker values as described in Section 4.4.

In this example, we use the foreign library to compress an
array of 4 bytes. On line 7 we use the runtime’s stack_alloc
function to place a new allocation of type [u8; 4] on the for-
eign library’s stack. Because allocating memory can change
the set of allocations accessible to foreign code, it interacts
with Omniglot’s allocation scopes: stack_alloc_t (to al-
locate space for a generic type T) obtains a unique refer-
ence to the outer allocation scope marker oalloc on line 8
and holds onto it through line 31. This unique borrow pre-
vents new upgrade operations (potentially on the new, stacked
and ephemeral allocation) from using this outer allocation
scope. In turn, stack_alloc_t provides a new inner alloca-
tion scope ialloc which is valid for the duration of this new
allocation. Any upgrade operations will thus use this new
allocation scope instead; we say the active allocation scope
changes (switching from a solid to a dashed line in Listing 3).

We write uncompressed data to this newly allocated buffer
on line 10. As illustrated in Section 4.4, writing any foreign
memory may invalidate other references. Thus, this opera-
tion obtains a unique reference to the access scope marker: it
closes the previous scope, and immediately re-opens a fresh
access scope (dotted line in Listing 3). Finally, we invoke
the foreign library’s compress function on line 15, which
executes it in the Omniglot runtime’s sandbox. Invoking a for-
eign function may both change foreign memory and change
the set of foreign allocations (in a callback), and thus requires
a unique reference to both allocation and access scopes.

Listing 3 demonstrates scope-based enforcement of Om-
niglot’s temporal constraints: for instance, line 12 validates
the allocated buffer into an OGVal<[u8; 4]> reference.

1 // Load a library into a runtime, creating
2 // allocation and access scope markers:
3 let (rt, lib, mut oalloc, mut access) =
4 Rt::new("libcompress.so");
5

6 // Allocate a [u8; 4] on the foreign stack
7 rt.stack_alloc_t::<[u8; 4]>(
8 &mut oalloc, |array, ialloc| {
9 // array: OGMutRef<'_, [u8; 4]>

10 array.write([0, 1, 2, 3], &mut access);
11

12 let validated = array.validate(&access);
13 println!("{:?}", validated);
14

15 let compressed_len = lib.compress(
16 buf: array.as_ptr(),
17 length: 4,
18 &mut ialloc, &mut access).validate();
19

20 // Would not compile, as `validated` is
21 // bound to the previous access scope:
22 println!("{:?}", validated);
23

24 let upgraded = array.as_ptr()
25 .upgrade_slice(compressed_len, &ialloc);
26 let revalidated = upgraded.validate(&access);
27 println!("{:?}", revalidated);
28

29 // `array` and `upgraded` cannot escape
30 // closure, capture the `ialloc` scope.
31 }
32 )
33

34

Active Access Scope
Active Allocation Scope

Listing 3: A basic Omniglot wrapper around a compression
library, with its allocation and access scopes visualized. We
create an Omniglot runtime, allocate memory, invoke a for-
eign function, and validate its returned result. Dashed and
dotted lines represent the active and open allocation and ac-
cess scopes, respectively. Each mutable borrow of a scope
marker closes the current and re-opens a new scope, causing
all references bound to the previous scope to be inaccessible.

However, this reference is bound to the access scope closed
on line 15. Thus, any attempts to access it (as on line 22) will
result in a compile-time error. Instead, correct bindings create
a new OGMutRef<[u8]> reference over the compressed data
length (line 25), and then re-validate it against the currently
open access scope (line 26).

5 Implementation

We implement Omniglot and its two runtimes in a set
of Rust crates of approx. 7000 LoC. We further extend
rust-bindgen by 860 LoC to automatically generate
Omniglot-compatible bindings from C header files. Our im-
plementation is available on GitHub: https://github.com/

https://github.com/omniglot-rs/omniglot


omniglot-rs/omniglot.
In this Section, we first present our two prototype Omniglot

runtime implementations for the Tock operating system (us-
ing RISC-V PMP) and Linux userspace (using x86 Memory
Protection Keys) respectively. As these runtimes use different
isolation primitives and run in different environments, we
classify them into strong and weak runtimes as per our threat
model (Section 4.1), and discuss which—if any—assumptions
the Omniglot runtimes make on the behavior of foreign li-
braries.

Finally, in Section 5.3 we present Omniglot’s invoke tram-
poline. While Omniglot is implemented in the type-system of
an unmodified Rust compiler, Rust normally does not allow
libraries to interpose on calls to foreign functions. Omniglot’s
invoke trampoline makes Omniglot practical by allowing it
to switch to a foreign protection domain on calls to foreign
functions. In contrast to existing approaches like libffi6, we
do so with minimal overhead, by using the Rust compiler’s
knowledge of the foreign function’s ABI to statically generate
code for loading function arguments into registers and on the
stack.

5.1 Omniglot for the Tock Operating System
OGPMP is an implementation of Omniglot for the Tock embed-
ded operating system kernel [21], utilizing the RISC-V Physi-
cal Memory Protection (PMP) unit as its memory isolation
primitive. The Tock kernel is itself written in Rust and used
for security critical applications, such as in the firmware of the
OpenTitan silicon root-of-trust or Microsoft’s Pluton security
controller embedded in modern x86 CPUs [49]. Because Tock
heavily relies on Rust’s safety for enforcing isolation between
mutually distrustful applications and must, for instance, in-
tegrate existing and certified cryptography libraries, it is an
ideal target for Omniglot.

The RISC-V PMP is a secure memory isolation primi-
tive and thus enables OGPMP to provide strong soundness
guarantees. In particular, OGPMP loads foreign libraries into
protection domains similar to Tock processes, running at a
lower privilege level, and without any memory of the Tock
kernel accessible to them. It executes library functions by
loading their arguments into registers and onto a dedicated
stack in foreign memory, and context-switching to a lower-
privilege mode. Libraries can transition back into the Tock
kernel (which corresponds to Omniglot’s host program) by
one of three mechanisms: returning from the function invoked
by the kernel, invoking a registered callback, or producing a
fault—in which case Omniglot returns an error to host code.
Notably, there is no standard system call interface accessible
to foreign code, and OGPMP does not expose any concurrency
primitives.

Because OGPMP fully isolates memory belonging to a for-
eign library, does not provide any means to circumvent this

6https://sourceware.org/libffi/

isolation, and does not expose any concurrency primitives to
the foreign library, it is considered a strong Omniglot runtime.
It can run arbitrary, untrusted and adverserial foreign libraries,
while maintaining the soundness of the Tock kernel.

5.2 Omniglot for Linux Userspace

On the other end of the spectrum, OGMPK brings Omniglot to
Linux userspace applications on desktop- and server-class sys-
tems. OGMPK utilizes x86 Memory Protection Keys (MPK), a
recent isolation mechanism built around the idea of assigning
virtual memory pages one of 16 protection keys. A core-local
and userspace-writeable register controls which protection
keys are accessible at any given time. Notably, MPK does not
require a system call to switch protection domains, making
domain transitions fast.

OGMPK uses link-map lists to load conventional shared
libraries into an isolated namespace. It then uses MPK to
assign all pages associated with a foreign library—and its
transitive dependencies—a protection key. When running
functions of the foreign library, OGMPK disables access to all
memory pages not assigned this protection key—making the
memory of host code and other foreign libraries inaccessible.

While MPK is a popular tool for intra-process memory
isolation [4, 16, 20, 23, 38, 46], in particular due to its low
overheads, it presents some challenges for security: for in-
stance, Connor et al. show that MPK-based isolation can be
circumvented through system calls, memory mappings, sig-
nal delivery, and race conditions [8]. As Omniglot’s focus is
on maintaining Rust’s soundness assuming a strong memory
isolation primitive, we do not address the inherent security
properties of MPK in this work. Therefore, OGMPK is a weak
Omniglot runtime.

Our implementation of OGMPK does override some sym-
bols such as alloc and free to use a custom, memory-
isolation aware allocator. However, actively malicious li-
braries can circumvent OGMPK’s memory isolation by using
system calls like mmap. Developers will need to validate that
foreign libraries do not perform such operations, or employ
seccomp-bpf-based mitigations as presented in ERIM [46].
Similarly, OGMPK does not prevent foreign libraries from ac-
cessing concurrency primitives. Developers must ensure that
libraries do not register signal handlers and run background
threads concurrently with host code execution, such as by
manually inspecting the foreign libraries, disallowing them
from using certain system calls, or inspecting the state of the
program at runtime.

Despite these weaker guarantees, OGMPK is still useful to
isolate libraries that are not assumed to be actively malicious.
Its reference and validation types can prevent many cases of
improper mutable aliasing and can ensure that values used by
Rust conform to its strict validity requirements.

https://github.com/omniglot-rs/omniglot


int randombytes_buf(void *, size_t);

pub fn randombytes_buf(
&self, *mut c_void, usize,

) -> OGResult<c_int> { }

extern "C" fn randombytes_buf_int(
*mut c_void, usize,
&RT, *const fn(), &mut RetVal);

= RT::invoke::<0, AReg2>
ca

llsge
ne

ra
te

s Copy arguments and
generic params to
well-known caller-
saved regs:
t0 = &rt

t1 = *const fn()

t2 = &mut RetVal

t3 = stack spill

invoke::<stack spill,
&rt argument location>

tail call

1. Save callee-saved registers.
2. Copy t3 (stack spill) bytes

from the Rust stack to the
foreign stack.

3. Enable memory protection.
4. Call foreign function (t1).

5. Disable memory protection.
6. Restore saved registers.

tail call

common_invoke

Read return value
registers and status
flags to determine
and encode return
value or error.
ret = Val(a0,a1);

or
ret = Err(SIGSEGV);

return to caller
(randombytes_buf)

encode_return

Figure 4: Omniglot wraps foreign functions by creating an internal, unsafe FFI binding and aliasing it to the Omniglot runtime’s
generic invoke symbol. The runtime preserves the Rust compiler’s argument registers and stack.

5.3 The invoke Trampoline

An Omniglot runtime is responsible for ensuring that any
foreign code runs within its sandbox and, in turn, all callbacks
execute in Rust’s context, with access to both Rust and foreign
memory. Implemented naïvely, however, this could prevent
a foreign function from accessing its parameters or writing
its return value, as they might be spilled on the host’s stack.
Omniglot solves this issue by copying this memory to and
from the foreign stack. This poses a challenge: how can the
Omniglot runtime know which memory to copy? Importantly,
this depends not only on the platform’s calling convention,
but also on each individual function’s signature.

To solve this problem, we introduce a generic invoke tram-
poline mechanism, illustrated in Figure 4. Rather than manu-
ally placing function arguments into their appropriate regis-
ters and stack offsets, Omniglot relies on the Rust compiler’s
knowledge of the C calling convention (as opposed to using a
dynamic approach like libffi). In particular, our modified
rust-bindgen generates a new extern "C" Rust function
for each C function binding, which expects the same argu-
ments as the original C function. When calling this generated
symbol, the compiler will therefore correctly lay out argu-
ments according to the C calling convention. This process is
captured on the left column of Figure 4, for an example C
function randombytes_buf.

We must now switch protection domains before executing
the function. This switch is implemented by a single, generic
invoke function, implemented once per runtime. The invoke
function executes some argument-specific setup code, some
common protection setup code, and then dispatches to the
target C FFI function. We must ensure that invoke is called
whenever a C FFI function is invoked. To do this, we alias
the C-ABI function symbol for the FFI call directly to the
generic invoke symbol. This has the effect of translating calls
to our generated FFI binding (fn randombytes_buf_int in
Figure 4) to calls to invoke, allowing the protection domain

setup to proceed. This technique effectively allows us to insert
custom protection instructions directly into a function pro-
logue, without modifying the foreign library or Rust compiler,
and without requiring Omniglot users to write any boilerplate
code. It does however introduce its own challenge: within the
body of the invoke function, we do not automatically know
which function should be invoked!

To solve this, we pass a combination of runtime and generic
arguments to the invoke function (which causes the compiler
to monomorphize it into concrete instantiations bound to its
generic parameters). Taken together, these arguments allow
the monomorphized invoke routine to find the function to
be invoked, locate the arguments for that function, find the
current foreign stack pointer, and finally store the function’s
returned value. These arguments can be seen in the example in
Figure 4. The first two arguments to randombytes_buf_int
are the arguments for the target C function. Of the remain-
ing invoke-specific arguments, the &rt parameter is used to
lookup library-specific information (like the location of the
foreign stack pointer), the *const fn() function pointer
stores the location of the original foreign function (int
randombytes_buf()), and the RetVal parameter is a con-
tainer for the eventual return value. The generic argument
AReg2 tells invoke where to find these extra arguments7.

6 Evaluation

This section evaluates Omniglot using multiple libraries
across different application domains and two memory iso-
lation primitives. With our evaluation we show the following:

Omniglot is general. It is able to safely encapsulate libraries
with different interface paradigms, across a wide range of
application domains. Omniglot further supports a wide
range of systems, from high performance desktop and

7Its accompanying integer is used to indicate arguments’ offset into the
stack, whenever arguments need to stack-spill.
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CryptoLib PMP 14 0 10 2 9105 µs 9145 µs (+0.44%) 9145 µs (+0%)
LittleFS PMP 7 0 0 7 3115.3 µs 3742.8 µs (+20.1%) 3764 µs (+0.5%)
LwIP PMP 3 1 2 5 51.74 µs 78.71 µs (+52.1%) 81.4 µs (+3.4%)
Brotli MPK 2 0 0 4 3.12 ms 3.14 ms (+0.6%) 3.14 ms (+0%)
libsodium MPK 1 0 0 2 51.61 µs 53.41 µs (+3.4%) 53.41 µs (+0%)
libpng MPK 5 15 16 3 352.98 µs 397.93 µs (+12.7%) 401.25 µs (+0.8%)

Table 2: Omniglot overheads for a diverse set of libraries, across two runtimes. We show the number of Omniglot operations per
benchmark iteration, and compare its overheads to an unsafe baseline, and memory isolation without Omniglot’s runtime checks.

server systems to highly resource-constrained microcon-
trollers, as well as userspace and kernel environments.

Omniglot is fast. Omniglot’s ability to perform zero-copy
accesses into foreign memory allows it to efficiently convey
data between host and foreign code. As we will show in
Section 6.2, this allows Omniglot to outperform related
work that delivers similar safety guarantees.

We lift the enforcement of Omniglot’s mutual exclusion
requirement into Rust’s type-system, turning it into a zero-
cost abstraction. In this evaluation, we further show that the
Rust compiler is able to optimize out validation in many
cases and, where it cannot, those overheads are small.

Because Omniglot’s overheads are primarily governed
by its underlying memory isolation mechanism, it delivers
competitive performance to existing systems that do not
maintain other safety-critical invariants such as aliasing or
type safety.

We consider two case studies: Section 6.1 shows how Om-
niglot can be used to efficiently integrate existing, unsafe
foreign libraries into an operating system kernel. Section 6.2
evaluates Omniglot’s support for loading and interacting with
widely-used userspace libraries. Table 2 summarizes the re-
sults of our measurements across both case studies. Finally,
Section 6.3 provides a breakdown of Omniglot’s overheads
through a series of microbenchmarks.

Experiment Setup. We evaluate two different Omniglot run-
times on different systems. User-space Linux evaluations run
on a CloudLab Wisconsin c220g5 node with two Intel Xeon
Silver 4114 CPUs at 2.2 GHz, and frequency scaling and hy-
perthreading disabled, using rustc 1.84.0-nightly and Linux
5.15.0. The benchmark process is pinned to a single CPU core.
Kernel evaluations run using a port of the Tock operating sys-
tem8, on a ChipWhisperer CW310 FPGA with the OpenTitan
EarlGrey silicon root-of-trust design9 and a RISC-V rv32imc
CPU at 24 MHz.

8Based on https://github.com/tock/tock, git revision 1967fa7.
9https://github.com/lowrisc/opentitan, git revision bbbd9b0.

6.1 Case Study: Tock Kernel
Tock is an operating system commonly used in security-
critical resource-constrained systems. Its kernel is written
in Rust and its design goes to significant lengths to minimize
the use of unsafe Rust. Nonetheless, practical deployments
of Tock often rely on foreign libraries to implement critical
operations. We evaluate OGPMP on three such libraries, across
a range of application domains and interface paradigms.

We evaluate the OpenTitan CryptoLib library by encapsu-
lating its HMAC-SHA256 algorithm. The results in Table 2
show the execution time, as well as the number of Omniglot
operations performed in a single HMAC operation over 4 kB
of data, carried out in batches of 512 B. Because this bench-
mark requires Omniglot to copy data into the CryptoLib’s
memory, enabling PMP-based memory isolation increases
execution time by 0.44%. Omniglot’s runtime checks (during
upgrade and validate) introduce no measureable overhead in
this case. In this benchmark, Omniglot tracks only a single
allocation in the foreign library, its HMAC context, making up-
grade operations fast. Furthermore, Omniglot requires devel-
opers to validate the returned HMAC tag. However, because
this tag is a simple byte-array, and a u8 integer is an uncondi-
tionally valid type, the Rust compiler is able to optimize such
validation away entirely.

Additionally, Omniglot supports libraries that maintain
state between calls. We evaluate OGPMP on LittleFS, a filesys-
tem library. We repeatedly format the filesystem, mount it,
create and open a file, write 1 kB UTF-8 code points to it,
read the data back, and then close the file. In this benchmark,
we compare the contents of the file with the original string. To
do this, Omniglot forces us to validate that the returned buffer
is a valid Rust string (i.e., valid UTF-8). This operation is
linear in the amount of data to validate, and explains OGPMP’s
overhead of 0.5% compared to memory isolation.

Finally, we demonstrate Omniglot’s ability to handle call-
backs. We do so by evaluating OGPMP with the LwIP em-
bedded network stack. Our benchmark sends an ICMP echo
request by allocating a new buffer, copying the packet, and in-
jecting it into the network stack. In response, LwIP invokes a

https://github.com/tock/tock
https://github.com/lowrisc/opentitan
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Figure 5: Execution time of decoding a PNG image, as func-
tion of the decoded image size. We compare OGMPK against
an unsafe FFI baseline and Sandcrust. Omniglot’s ability to
perform zero-copy accesses to foreign memory allows it to
outperform Sandcrust, which requires serialization and copy-
ing.

callback previously registered with OGPMP, passing a pointer
to the ICMP echo response packet. OGPMP needs to upgrade
this pointer to a reference to read it, adding an overhead of
3.4% over memory isolation. Using this reference, it is able to
directly access and read this response in foreign memory with-
out copies. Nonetheless, the small packet size of ICMP echo
requests result in a pronounced memory isolation switching
overhead for invocations and callbacks of 52.1%.

6.2 Case Study: Linux Userspace

Our OGMPK implementation makes Omniglot usable for iso-
lating conventional userspace libraries. To demonstrate this,
we evaluate OGMPK on three libraries performing data com-
pression, cryptographic algorithms, and image encoding. We
also compare the performance and overheads of Omniglot to
Sandcrust [18], an IPC and serialization-based approach to
isolate untrusted code within a Rust program.

Brotli, a data compression library, and Sodium, a cryptog-
raphy library, feature similar interface paradigms. Specifi-
cally, they perform “one-shot” computations on some input
buffer, producing a corresponding output buffer. For Brotli,
we benchmark compressing and decompressing 1 kB of UTF-
8 encoded English text. Following decompression, we check
that the decompressed text equals our input. Similar to Lit-
tleFS, Omniglot forces us to perform Rust’s string validation
for this operation. The overhead of this validation is masked
by the long compression routine. For Sodium, we hash 32 kB
of random inputs. As the output is a simple byte-array, valida-
tion is optimized out by the compiler.

Lastly, we use an encapsulated libpng to decode refer-
ence images with varying dimensions. Figure 5 shows the
runtime of these operations compared to both an unsafe FFI
and Sandcrust for a range of output sizes, whereas Table 2

(a) Setup Invoke
PMP MPK PMP PMP

Unsafe 0.17 µs 1.49 ms 0.17 µs 13.74 ns
Omniglot 73.88 µs 4.08 ms 6.57 µs 98.90 ns
Sandcrust 1.79 ms 10.87 µs
Tock Upcall 56.20 µs

(b) Upgrade Callback
allocs / CBs PMP MPK PMP MPK
1 0.6 µs 32.30 ns 8.66 µs 230.1 ns
8 1.7 µs 164.1 ns 9.82 µs 364.3 ns
64 9.4 µs 1.10 µs 18.22 µs 1.32 µs

(c) Validate 64 B u8 8 kB u8 64 B str 8 kB str
PMP 0.22 µs 0.23 µs 2.74 µs 161.5 µs
MPK 1.67 ns 1.70 ns 359.6 ns 70.94 µs

Table 3: Omniglot’s overheads broken down by operation.

shows the runtime for a 23 kB image (Omniglot’s relative
overheads decrease in the image size). libpng uses a call-
back to progressively read image data from the host program’s
memory. It also expects callers into the library to use setjmp
for handling errors internal to the library. Omniglot does not
support this directly, as it expects every function to return nor-
mally. We thus create a wrapper in C around these functions,
converting a longjmp into an error return value.

Figure 5 shows that OGMPK’s performance is close to that
of the native, unsafe FFI bindings, while Sandcrust incurs
additional overheads increasing with the decoded image size.
This is because Sandcrust uses IPC and serialization to shut-
tle data between host and foreign memory. While this gives
Sandcrust strong soundness properties, similar to those of
Omniglot, it imposes significant overheads.

6.3 Microbenchmarks

We quantify Omniglot’s runtime overheads through a com-
prehensive set of microbenchmarks. Subtable 3 (a) illustrates
the time required to instantiate an Omniglot runtime (Setup,
measured as time it takes to start the process and run a sin-
gle foreign function until it returns), and to invoke a single
foreign function which returns immediately (Invoke). The
table shows OGPMP’s hot invoke path, where the RISC-V
PMP is already configured. When this is not the case, for
instance by switching to a different library or process, OGPMP
instead incurs an overhead of 10.49 µs (adding 3.92 µs for
PMP re-configuration to the 6.57 µs for the hot invoke path).
We compare Omniglot’s overheads across its two runtimes
with Rust’s unsafe FFI as a baseline. We further compare
OGMPK to Sandcrust’s IPC-based approach [18], and OGPMP
to conventional Tock process isolation.

Omniglot must keep track of the set of allocations and
callbacks registered at runtime. Subtable 3 (b) shows that
Omniglot’s overheads for upgrade operations and callbacks
are linear in the number of such elements tracked. OGPMP has



higher base-overhead for callbacks compared to OGMPK, as
they are implemented similar to a context switch.

Finally, Subtable 3 (c) shows that Omniglot’s validate is
linear in the amount of data validated. However, when types
are unconitionally valid, such as fixed-width integer types,
the Rust compiler is able to optimize out validation entirely.
We can see this in the difference between validating 64 B and
8 kB for u8 integers.

7 Related Work

Omniglot builds upon a significant body of work in the pro-
gramming languages, systems, and security communities. The
security implications of foreign function interfaces have only
recently been recognized as their own class of vulnerabili-
ties. For instance, Mergendahl et al. establishes the concept
of Cross-Language Attacks, an entirely new set of attack vec-
tors [26]. One way to reduce these vulnerabilities is through
static analysis techniques, such as proposed by Li et al. [22].

Omniglot employs intra-process isolation mechanisms sim-
ilar to a range of contributions [3, 4, 14, 16, 17, 18, 23, 29, 35,
38, 46, 52]. However, each of these require expensive opera-
tions such as copying and serialization to maintain soundness,
or do not consider it at all. Omniglot is the first system that
maintains soundness across interactions with foreign code
while supporting zero-copy accesses into foreign memory.

We design a type infrastructure to model and mediate safe
interactions with foreign code. This closely relates to work
on Linking Types, which seek to extend the type system of a
host language to encode the behaviors and semantics native
to guest (foreign) code [13, 32, 33, 34, 45]. Existing work
on linking types is focused primarly on the core semantic
questions or type system development, attempting to express
foreign semantic guarantees within a host’s type system. How-
ever, these contributions assume that foreign code is internally
correct. Omniglot can safely interact with libraries without
reasoning about whether they are correct.

Finally, verification based approaches like eBPF [24, 28],
promise safe interactions with untrusted code, with only few
or no runtime checks. While these tools are growing increas-
ingly capable and are used in complex settings such as stor-
age functions [51] and network functions [27], they cannot
encapsulate arbitrary, untrusted and unmodified libraries. Re-
cent work proposes augmenting the static nature of such
verification-based approaches with runtime checks to regain
more expressiveness [12].

8 Discussion & Future Work

Deeper integration with foreign languages. Omniglot can
isolate untrusted foreign libraries without making any assump-
tions about their behavior. While this is generally desirable,
by exploring deeper integrations with foreign languages we

might be able to reduce Omniglot’s overheads even further.
Additionally, while Omniglot as presented does not prevent
a host program from violating soundness in foreign libraries,
relying on specific properties of the language in which foreign
code was written may allow Omniglot to enforce safety and
soundness in foreign code as well.

Other host languages. In this paper, we focus on implement-
ing Omniglot specifically for Rust, a popular choice for safe
systems programming today. However, other safe languages
have a similar need for sound interactions with foreign code.
Future work should explore how Omniglot’s concepts can be
mapped to other safe languages.

Better host language bindings. Finally, Omniglot is not API-
compatible with Rust’s existing, unsafe C FFI. While our
experience shows that most libraries can be integrated with
the Omniglot bindings in a highly mechanical way, Omniglot
does not support automatically transforming existing, unsafe
usages of foreign libraries to Omniglot’s safe APIs. We do
argue that Omniglot’s API does not place undue burdens on
developers though—in fact, even for correct bindings with
Rust’s unchecked FFI, developers would still need to perform
the validations that Omniglot enforces.

9 Conclusion

Software written in type-safe and memory-safe programming
languages has to interact with components written in foreign,
unsafe languages. A single violation of the language’s safety
invariants can infringe upon the application’s overall safety.

This paper presents Omniglot, a system that preserves
soundness of host code in the presence of untrusted foreign
code. We demonstrate Omniglot’s generality and low over-
heads by evaluating it on two systems and a diverse set of
libraries. We show that Omniglot can safely encapsulate for-
eign libraries with minimal overheads.
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A Artifact Appendix

Abstract
Omniglot is a framework to safely interact with libraries writ-
ten in foreign languages from within Rust. This artifact con-
tains our research prototype implementation of the Omniglot
framework for Linux userspace (x86 MPK) and the Tock em-
bedded operating system kernel (RISC-V PMP). We also in-
clude scripts to install any required dependencies for building
and running Omniglot, and scripts to generate the evaluation
results as presented in the paper. More details are available in
the artifact’s README.md file.

Scope
This artifact demonstrates Omniglot’s ability to work across
multiple platforms, such as in Linux userspace or resource-
constrained embedded systems, and its support for a range
of libraries. It allows readers to evaluate the performance
and overheads of Omniglot, and validate the claims made
in the paper. Specifically, it can reproduce the results of the
following experiments:

• Omniglot’s overheads for a set of libraries (for both
OGMPK and OGPMP, Table 2).

• Omniglot’s ability to perform zero-copy accesses into
foreign memory (Figure 5).

• Omniglot’s overheads broken down by operation (for
both OGMPK and OGPMP, Table 3).

Contents
The artifact contains the implementation of Omniglot,
its two runtime implementations, and other dependen-
cies. The Omniglot framework is implemented as a
set of Rust crates, split across multiple repositories
available on GitHub in the omniglot-rs organization
(https://github.com/omniglot-rs):

omniglot: Contains shared infrastructure and implemen-
tations of the reference and validation types (see Sec-
tion 4).

omniglot-mpk: Contains the implementation of the
OGMPK runtime for Linux userspace, as well as bindings
and benchmarks for the libraries evaluated using this
runtime (see Section 6).

omniglot-tock: Contains the implementation of the Om-
niglot runtime for the Tock operating system kernel on
RISC-V platforms (OGPMP). It also contains bindings
and benchmarks for the libraries which we evaluate using
this runtime (see Section 6).

rust-bindgen: This repository holds our fork of the
rust-bindgen utility for generating Omniglot FFI bind-
ings from a C header file.

Hosting
The Omniglot framework is maintained un-
der the omniglot-rs GitHub organization:
https://github.com/omniglot-rs.

We provide instructions for reproducing the artifact eval-
uation through a Zenodo record under the following identi-
fier: doi:10.5281/zenodo.15602886. This record also contains
scripts and archived versions of the Omniglot components and
dependencies required for reproducing the evaluation results
of the paper.

Requirements
Each Omniglot runtime is designed to be evaluated on a spe-
cific platform:

OGMPK: The OGMPK evaluations must be run on a system
with x86 MPK support. We design our evaluation scripts
to run on a CloudLab [11] cc220g5 node. The included
instructions demonstrate how to set up a CloudLab ex-
periment for evaluating OGMPK.

We caution against executing the evaluation scripts on a
developer’s personal machine, as it installs system-wide
dependencies and attempts to make persistent changes
to the machine’s bootloader configuration.

OGPMP: The OGPMP evaluations expect to be run on a Chip-
Whisperer CW310 FPGA running the OpenTitan Earl-
Grey SoC design, built from the OpenTitan repository at
revision bbbd9b0.

Installation and Experiment Workflow
The artifact’s README.md file contain detailed instructions on
how to prepare the OGMPK and OGPMP evaluation platforms
and reproducing the evaluation results.

https://doi.org/10.5281/zenodo.15602886
https://github.com/omniglot-rs
https://github.com/omniglot-rs
https://doi.org/10.5281/zenodo.15602886
https://github.com/lowRISC/opentitan/
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