
Power Clocks: Dynamic Multi-Clock Management for Embedded
Systems

Holly Chiang∗, Hudson Ayers∗, Daniel Giffin∗, Amit Levy†, Philip Levis∗
∗Stanford University, †Princeton University

{hchiang1@, hayers@, dbg@scs.}stanford.edu, aalevy@cs.princeton.edu, pal@cs.stanford.edu

Abstract
This paper presents Power Clocks, a kernel-based dy-

namic clock management system that reduces active en-
ergy use in embedded microcontrollers by changing the
clock based on ongoing computation and I/O requests. In
Power Clocks, kernel hardware drivers asynchronously re-
quest clocks, providing a set of constraints (e.g., maximum
speed), which the kernel uses to dynamically choose the
most efficient clock. To select a clock, Power Clocks makes
use of the observation that though slower clocks use less
power and are suited for fixed time I/O operations, faster
clocks use less energy per clock tick, making them opti-
mal for pure computation. Using Power Clocks, a networked
sensing application consumes 27% less energy than the best
static clock, and within 3% of an optimal hand-tuned dy-
namic clock strategy. Power Clocks provides similar energy
savings even when there are multiple applications.

1 Introduction
Cheap microcontrollers (MCUs) make a variety of sens-

ing applications possible. Medical sensors monitor patients’
vital signs, and notify doctors of anomalies. Utility sensors
monitor and control water, gas and power systems. Sensors
find myriad other uses in transportation, public safety, and
agriculture [25]. In many of these applications, deployed
sensors lack access to power sources, while cost or other con-
straints limit battery sizes. Accordingly, energy efficiency
defines the lifetime of many sensor systems, and application
developers frequently make trade-offs between performance
and application lifetime.

To conserve energy, sensor applications spend most of
their time in deep sleep. They punctuate their sleep with
periods of I/O and computation to gather, process, and com-
municate data. These brief active periods consume most of
the system’s energy. Low-power operation during active pe-

riods centers on minimizing the energy consumed executing
CPU instructions and powering on-chip peripherals such as
buses, sensors, and flash controllers.

Low-power microcontrollers have begun to introduce
a new mechanism for energy efficiency: clock selection.
These microcontrollers [27, 29, 16] provide multiple clock
sources which vary in their frequency, power draw, and
startup times. Different clocks can vary in current draw by
more than an order of magnitude (e.g., 1.14mA vs. 26.70mA
on an Atmel SAM4L): clock choice is an important compo-
nent of system energy consumption. Which clock is optimal
depends on whether ongoing peripheral operations are CPU
or I/O bound.

Interestingly, and inverting the tradeoffs of dynamic fre-
quency and voltage scaling (DVFS) in traditional proces-
sors, in these microcontrollers fast clocks are more energy-
efficient for CPU operations. Slow clocks, in turn, are more
efficient for I/O operations. In DVFS systems, a slower clock
allows a lower voltage and therefore lower power; in mi-
crocontrollers, however, there is no voltage scaling and the
clock itself is a significant energy cost. A faster clock con-
sumes more power, but amortizes this cost over more CPU
cycles: it draws more power but less energy per CPU cycle.

Choosing the most energy efficient clock requires sat-
isfying many constraints and tradeoffs. Many peripherals
have specific clock requirements, which means choosing a
clock requires hardware-specific knowledge of each periph-
eral used. Additional energy savings can be achieved by dy-
namically changing the clock in response to application state,
but doing so while ensuring the correct functionality of all
ongoing peripheral operations is challenging. To avoid this
complexity, applications often pick a single static clock that
ensures correct functionality for all peripherals, sacrificing
the potential for efficiency gains from dynamic clock

This paper introduces Power Clocks, a kernel subsys-
tem that dynamically chooses a microcontroller’s system
clock in response to computation and I/O requests. With
Power Clocks, kernel hardware drivers asynchronously re-
quest clocks, providing a set of constraints (e.g., maximum
speed), which the kernel uses to dynamically choose the
most efficient clock. The key insight Power Clocks uses
is distinguishing between low power (cost over time) and
low energy (cost per tick) clocks, and selecting which to use
based on clock constraints of active and waiting peripherals.

Power Clocks is implemented in the Tock operat-

ing system [20] and on two microcontrollers, the Atmel
SAM4L [27] and the NXP K66 [16]. The energy savings
provided by Power Clocks are evaluated using two example
sensor applications. We find that using Power Clocks, a sens-
ing application can consume 27% less energy than the best
static clock, and only 2% more than an application-specific
kernel that dynamically changes the clock. For multipro-
grammed OS kernels, Power Clocks can provide similar en-
ergy savings when there are multiple independent applica-
tions, an otherwise impossible task.

2 Choosing Optimal Clocks
A clock is a simple signal that goes between 0 and 1. The

clock’s high frequency and high load, from driving all syn-
chronous elements on the chip, means that the clock con-
sumes a significant amount of power. The clock can be re-
sponsible for up to 40% of dynamic power consumption in
synchronous digital circuits [4]. This number can be even
more significant in low power microcontroller applications.

Modern Cortex-M MCUs allow software to choose be-
tween a number of clocks to drive the CPU, buses, and other
peripherals. In addition to varying in frequency by orders
of magnitude (115kHz to 180MHz on the SAM4L), these
clocks can differ in type (RC oscillator, crystal oscillator,
PLL/FLL). This allows the MCU to meet clock requirements
ranging from specific frequencies, to fast startup times, to
temperature stability. This section focuses on the trade-off
between power and energy that different clocks provide, and
introduces the benefits of and constraints on dynamically
changing the clock.

2.1 Power vs Energy
Modern microcontrollers have sleep and deep sleep

modes where power draw is minimal compared to active pe-
riods (µA vs mA). On Cortex-M MCUs, sleep modes stop
the processor clock while deep sleep stops all high frequency
clocks and disables most non-essential peripherals [11].

During active periods, reducing energy use usually means
lowering power draw, or the rate at which energy is con-
sumed. On CMOS chips, power can be divided into dy-
namic and static power. Dynamic power is dissipated each
time a signal toggles, causing capacitors to charge and dis-
charge. Static power is dissipated by current leaking through
powered transistors, even when they are not actively switch-
ing. While static power is an increasing concern with smaller
CMOS processes, dynamic power still dominates for mi-
crocontrollers. Dynamic power scales linearly with clock
frequency, while static power is independent of clock fre-
quency. Accordingly, a circuit’s power draw is a nearly lin-
ear function of frequency, with a significant constant compo-
nent [3]. Slower clocks are low power since they draw less
dynamic power, and therefore less power at a given instant.
Faster clocks are low energy: as frequency increases, static
power is amortized over more clock ticks, minimizing the
energy per clock tick.

The typical sensor node consists of a sensing system to
gather data, a processing system to locally process data,
and a wireless communication system to transmit data [28].
Sensing and communication operations are usually I/O
bound, while processing is compute bound. I/O bound op-

0 100 200 300 400 500 600
Time (ms)

0

1

2

3

4

En
er

gy
 C

on
su

m
ed

 (m
J) Static 48MHz: 4.29 mJ

Static 4MHz: 4.13 mJ

Dynamic: 2.90 mJ

Figure 1: Cumulative energy used over time by an exam-
ple sense-process-send application. Optimal dynamic clock
management provides 32% energy savings over the best
static alternative.

erations take a fixed amount of time regardless of the clock
used; a faster clock does not lead to faster completion. To
minimize energy, the low power clock should be used. Com-
pute bound operations complete faster when a faster clock is
used. To minimize energy, the low energy clock should be
used. Since the low energy clock is effectively the fastest
clock, compute operations are energy-optimal when they
“race to idle” - they run at the fastest frequency in order to
return to sleep as quickly as possible [3].

Many more powerful processors support DVFS, which
aims to reduce the energy consumption on a single clock by
reducing the clock’s frequency in order to perform voltage
scaling. This paper focuses on systems which support only a
fixed voltage. Further discussion of why the techniques de-
scribed in this paper are fundamentally different from DVFS
techniques can be found in Section 6.

2.2 Dynamic Clock Change Benefits
Minimizing energy consumption requires using the right

system clock. Systems today typically use one of two al-
gorithms to manage clock energy: they use a slow, low
power static clock or a fast, low-energy static clock (race-
to-idle). Systems using a slow static clock choose the low-
est power clock that is fast enough for all peripherals in a
given workload. This algorithm is easy to implement and
safe but wastes energy during compute-bound operations.
Race-to-idle, in contrast, always uses the fastest clock so as
to minimize static power consumption by entering deep sleep
sooner. This is energy-efficient for compute operations, but
can waste energy if there is I/O: using a 48MHz clock rather
than a 4MHz clock to drive a 4MHz bus uses more power
without reducing runtime.

Figure 1 shows these trade-offs for an example sense-
process-send application: a static 4MHz clock is more effi-
cient during sensing (the first 150ms), while a static 48MHz
clock is more efficient for processing data. Relative to sense
and process, the send operation is short enough that its en-
ergy usage is relatively unnoticeable on the graph. The sense
operation is I/O bound and lasts the same length regardless of
clock used, while the processing data operation is compute
bound and takes significantly longer with the slower 4MHz
clock. Dynamically changing the clock to use low-power
clocks for I/O bound operations, and low-energy clocks for

computationally intensive operations, gives the best of both
worlds, allowing the application to run almost as quickly as
if the static 48MHz clock was used, while reducing energy
consumption by 30-32% over the static clock choices.

2.3 Clock Change Constraints
Dynamic clock selection is necessary to ensure energy-

optimal clocks are used for different operations. However,
peripheral requirements must be considered at each opportu-
nity for a clock change.
2.3.1 Clock Selection

Even when many clock options are available, the choice
of clock is often constrained, with the CPU, buses, and other
peripherals each having their own clock requirements. For
example, a UART bus might need to operate at a specific
frequency (e.g. baud rate of 115200), or chips connected to
a SPI bus may limit how fast the bus can run (e.g. 1MHz,
8MHz). The ADC may require a minimum frequency in or-
der to achieve its desired sample rate. Additionally, a periph-
eral’s clock requirements are often specific to its microcon-
troller.

A single clock cannot match the requirements of every
peripheral, so most peripherals have a divisor that allows
them to divide a clock to a lower rate. This is typically just a
counter that triggers the peripheral clock after every n ticks
of the input clock. For example, a bus with a maximum clock
speed of 1MHz can be driven by an 8MHz clock after the bus
divides the input clock by a factor of 8. However, this draws
more power than using a 1MHz clock with no divider (the
8MHz clock draws more power).

It is not always possible to just use a faster clock. Periph-
erals may require specific clocks for reasons such as accu-
racy, or may only have access to a finite or integer divider.
2.3.2 Clock Change

In addition to choosing which clock is optimal for a given
set of ongoing operations, a clock management system must
also consider when it is safe to change clocks. Some periph-
eral operations can function correctly across a clock change,
but others require a constant frequency while they execute.

Some peripherals, such as SPI and I2C, have a clock line
that indicates when a receiver should read from the data line.
These peripherals can tolerate frequency changes while an
operation is ongoing because the clock line synchronizes the
receiver to the sender: if a clock edge is delayed by a few mi-
croseconds, or even milliseconds, the receiver can still read
data correctly. However, a SPI or I2C bus may be used to
communicate with an external chip, which can have a lower
maximum clock frequency than the main microcontroller. If
this is the case, and the frequency on the bus’s clock line be-
comes higher than the maximum frequency of the external
chip, then communication with the external chip will fail.

Other peripherals, such as the UART and ADC, rely on
precise timing and can malfunction if the clock jitters. A
clock change can corrupt a UART data transmission by send-
ing at the wrong speed so that a receiver reads the wrong
message. Similarly, changing the clock while an ADC is
sampling can cause it to sample at the wrong rate. To ensure
correctness, a system must not change the clock while any
such timing-sensitive operations are in progress.

Table 1: The Power Clocks API. Each driver implements
the ClockClient interface and informs the ClockManager
by calling register client, which calls the ClockClient’s
client registered in return.

register client(client: &ClockClient)
set max frequency(freq: u32)
set min frequency(freq: u32)
set clocklist(clock list: u32)

ClockManager no jitter(can jitter: bool)
make clock request()

release clock request()

client registered()
ClockClient update clock configs(new f: u32)

clock request granted()

3 Power Clocks
Since applications can save energy through dynamic

clock management, how should it be done? Performing dy-
namic clock management in the application is challenging:
interleaving clock management code with application logic
is likely to introduce bugs and makes it harder to port appli-
cations between chips. Furthermore, in the case of multiple
applications, information would have to be shared between
applications to coordinate clock changes, and the number of
possible state combinations multiplicatively increases with
each additional application. Instead, dynamic clock manage-
ment should be handled in the kernel.

3.1 Design Goals
The ultimate goal of a clock management system is to

make the device more energy efficient. However, as we saw
in Section 2.3, there can be many peripheral-specific con-
straints on choosing the clock, and careless clock changes
can result in incorrect peripheral behavior. From these points
we propose the following design goals for a dynamic clock
management system:

Efficiency: Achieve significant energy savings over the best
static clock choice, be near optimal approach.

Flexibility: All peripherals should be able to precisely spec-
ify their clock requirements.

Correctness: Peripherals must continue to operate correctly
after a clock change.

Notably, meeting timing deadlines is explicitly not a goal.
This paper focuses on sensornet type systems with lax timing
constraints, not control systems with real-time deadlines.

3.2 System Architecture
Power Clocks is a kernel API and subsystem that dynami-

cally changes the clock in an energy-efficient manner. Rather
than deferring global and chip-specific clock management
decisions to applications, Power Clocks chooses clocks dy-
namically using aggregated local information from drivers.

Power Clocks imposes a split-phase [12] API between the
ClockManager and ClockClients, as shown in Table 1. A
centralized component, called the ClockManager, chooses
the most energy-efficient clock, subject to the clock con-
straints of drivers with active or waiting operations. When

Application ADC
ClockClient

ClockManager

make_clock_request

clock_request_granted

release_clock_request
sample

no_jitter
set_min_frequency

sample_adc
request
clock

yield

compute

Figure 2: Example interaction of a ClockClient (the ADC
driver) with the ClockManager. When an app requests ADC
samples, the ADC driver interacts with the ClockManager

choosing the clock, the ClockManager also takes into ac-
count whether the current workload is compute or I/O bound.

Each peripheral driver serves as a ClockClient, and regis-
ters itself with the ClockManager during initialization. Each
client informs the manager of its clock requirements before
performing any operations that require a clock. Require-
ments can include the minimum and/or maximum frequency
permitted for an operation, whether the peripheral can toler-
ate a clock change mid-operation, and optionally a specific
list of allowed clocks. When the active clock is compatible
with all of a client’s requirements, ClockManager issues a
callback to the client, signaling that it can begin.

3.3 Example Execution
Figure 2 shows an example of Power Clocks in action.

An application requests ADC samples from an ADC driver
that has implemented ClockClient. The client first saves the
request parameters for use in the callback. Next, it reports
the ADC’s clock requirements to the ClockManager. These
requirements include the minimum clock frequency it needs
to achieve its desired sample rate (set min frequency) and
that it cannot handle clock changes mid-operation (no jit-
ter). The client calls make clock request, asking the
ClockManager for a clock that meets its reported require-
ments, and returns to wait for a compatible clock.

When the ClockManager is ready to change the clock, as
described in Section 3.6, it uses the process discussed in Sec-
tion 3.5 to choose the next clock. After the clock is changed,
the ClockManager issues a callback to the client (clock -
request granted), signaling that it can begin operation us-
ing its saved parameters. Because the ADC client specified
that it was a no-jitter peripheral, the ClockManager will not
change the clock until the client releases this constraint, re-
gardless of requests from other clients.

Once the client finishes ADC sampling, it releases its re-
quirements (release clock request). With only compute
operations left, the ClockManager races to sleep, switching
to the low-energy clock to complete remaining computations
so the chip can enter deep sleep.

3.4 Meeting Design Goals
The API between ClockManager and its clients enables

Power Clocks to achieve its three design goals.
3.4.0.1 Efficiency

Power Clocks implements the energy-efficient strategy of
using the low-power clock when there are any I/O bound
operations, and using the low-energy clock when there are
only compute bound operations. When there are both I/O
and compute bound operations, the most energy efficient
clock is the slowest clock that allows computation to fin-
ish before I/O operations. For such cases, Power Clocks
uses the I/O operations’ low-power clock because applica-
tions designed for low power nodes rarely overlap lengthy
computation with I/O. Power Clocks tracks active I/O bound
operations through peripheral calls to make clock request
and release clock request. Section 5 evaluates Power
Clocks’s energy efficiency.

Power Clocks addresses the challenge of clock changes
incurring time and energy overheads by waiting for a set time
quanta before switching to the low-energy clock for compute
operations. This delay reduces the energy wasted by always
changing the clock for short computations.
3.4.0.2 Flexibility

Power Clocks gives clients flexibility in requesting
clocks. Peripherals’ clock requirements often vary per op-
eration. For instance, the SAM4L’s SPI generates its baud
rate using a divisor between 1 and 255 to divide the clock.
In order to achieve a 1,000,000 baud rate, the SPI needs a
clock frequency between 1MHz and 255MHz. set max -
frequency and set min frequency allow peripherals to
express their clock requirements as a range of allowed fre-
quencies. Peripherals may also require specific clocks. For
instance, the ADC may want to only use clocks that pro-
duce accurate sample times regardless of environmental con-
ditions. set clocklist would allow the ADC to limit its
list of allowable clocks to those with higher stability.
3.4.0.3 Correctness

Ensuring correct peripheral operation requires allowing
peripherals to adjust their clock related configurations prior
to clock changes. Power Clocks does so through update -
clock configs, which the ClockManager calls on Clock-
Clients with active operations, before the clock change if the
new clock is faster, and after the clock change otherwise.

No-jitter peripherals such such as UART or ADC, which
can malfunction if the clock frequency changes during an ac-
tive operation, report their requirement with the no jitter
method. ClockManager will not change the clock unless all
active clients support jitter.
3.5 Clock Selection Algorithm

If a client calls make clock request and its clock re-
quirements are compatible with the current clock, the man-
ager issues a clock request granted callback only if do-
ing so will not further delay outstanding requests. This pre-
vents starvation, which happens when a series of new re-
quests cause an outstanding request to delay indefinitely.

A new request does not delay pending requests if two con-
ditions hold. First, the requesting client cannot have no jit-
ter set: otherwise, it will lock in the current clock, prevent-

ing pending requests from changing the clock. Second, there
must exist a clock that satisfies both the requesting client and
all pending clients. This ensures that when the clock can be
changed, if the requesting client is still active, the Clock-
Manager can change the clock to one that services all of the
pending requests. If a client’s request does not meet these
two conditions, the ClockManager enqueues it.

The request queue is a FIFO queue. When a clock change
occurs, the ClockManager starts at the head of the queue and
iterates through the requests, finding the intersection of each
request’s clock requirements with that of requests before it.
The first request finds the intersection of its clock require-
ments with that of clients with active operations, ensuring
that whatever clock is chosen will not interfere with their op-
erations. If a request causes the intersection to be zero, the
ClockManager skips it.

If the final intersection has multiple clocks, ClockMan-
ager chooses the lowest power one. If the request queue is
empty when a clock change occurs, it selects the low energy
clock. All of the pending requests that are not serviced keep
their ordering in the queue: the first (oldest) request with
zero intersection will become the first request in the queue
and receives the highest priority.
3.6 Clock Change Conditions

At a high-level, Power Clocks aims to choose the most
energy efficient clock at each instant of operation. How-
ever, eagerly changing clocks immediately in response to re-
quests from ClockClients is sub-optimal because of two phe-
nomena: lockout and thrashing. To address both of these,
Power Clocks takes advantage of typical characteristics of
low-power applications.

Lockout can occur when a client requires the no jitter
constraint, preventing clock changes while the client’s opera-
tion is outstanding, and when subsequent requests have only
partially-overlapping clock requirements. If the ClockMan-
ager uses a greedy algorithm, it might unnecessarily commit
to a clock incompatible with subsequent operations, forcing
them to be serialized and prolonging the MCUs active time.

For example, if an application initiates an ADC
operation—which cannot tolerate clock changes and needs
at least a 1MHz clock—immediately followed by an I2C
operation—which needs at least a 4MHz clock—the Clock-
Manager could commit to the 1MHz clock for the ADC op-
eration and be forced to delay the I2C operation until the
ADC completes. In this example, it would be more time
and energy efficient to wait until both the ADC and I2C
clients have submitted their clock requests before changing
the clock. This would cause the ClockManager to choose the
4MHz clock, allowing both operations to occur in parallel.

To address such cases, Power Clocks waits to make more
informed clock choices. Power Clocks assumes an asyn-
chronous operation model (typical for low-power systems)
where applications initiate I/O operations asynchronously
and are notified of completion through callbacks after yield-
ing their thread of execution. Power Clocks initiates a clock
change once all applications are yielded, as this indicates that
all I/O requests have been made. At this point, the Clock-
Manager can make an optimal clock choice based on a global
view of concurrent I/O operations. While this is not a perfect

solution, it works well for Power Clocks because it allows
parallelizing peripheral operations despite no-jitter peripher-
als preventing clock changes. This strategy can also save
energy by reducing the number of needed clock changes.

Thrashing is the result of frequently switching between
clocks when the CPU is active for short bursts between I/O
operations. Because clocks take time to stabilize, there is a
fixed energy cost to clock changes that often outweigh the
benefit of short bursts of more energy-efficient operations.

Power Clocks reduces the overhead of thrashing by using
application time quantum expirations as a signal that the ap-
plication is running a long compute bound operation. When
the time quantum expires, if there are no I/O bound clients,
Power Clocks changes to the low-energy clock. This heuris-
tic is based on the observation that CPU utilization in low-
power embedded systems is highly bimodal: it either is very
short (e.g. lightweight I/O processing) or very long, taking
hundreds of milliseconds (e.g. occasional signal processing
or cryptographic operations).
3.7 Limitations

While Power Clocks performs well for the typical sense-
process-send application, there are several edge cases for
which other approaches may outperform it.

First, if a single static clock happens to be the most
energy-efficient approach (e.g. if applications are almost
entirely compute-bound), Power Clocks adds unnecessary
overhead. Power Clocks is not useful for such applications.

Second, if a no-jitter operation never completes, Power
Clocks will never change clocks. For instance, an application
that samples the ADC continuously would prevent Power
Clocks from ever changing the clock once the ADC starts.
No-jitter peripheral operations can delay or even starve other
peripheral operations waiting for a clock change. Though
Power Clocks does not address continuously running oper-
ations that require a constant clock, energy-limited applica-
tions rarely have such peripheral operations.

Third, latency sensitive applications may fail to meet tim-
ing deadlines under Power Clocks. In addition to Power
Clocks’s code overhead, operations may experience latency
waiting for the clock to change. Furthermore, peripheral
driver code is processed by the CPU, so when a low power,
slower clock is used to run a peripheral’s I/O bound opera-
tion, some of that peripheral’s driver code for things such as
peripheral configuration or interrupt handling will also run
on that slower clock. All this means that for an application
using Power Clocks, tasks are likely to finish later than in
a system using a fast static clock choice. There is a funda-
mental trade-off between minimizing power and maximizing
throughput. Integrating real-time requirements into Power
Clocks is an area of future work.

4 Implementation
Power Clocks is implemented in the Tock embedded op-

erating system, which is designed to run multiple concur-
rent, mutually-distrustful applications on low-power micro-
controllers [20]. Prior to this work, Tock used a single static
clock.

Power Clocks is implemented on two microcontrollers:
the Atmel SAM4L [27] on the imix development board, and

the NXP K66 [16] on the Teensy 3.6 development board.
The SAM4L and K66 are chosen because they both have
multiple clock sources that the user can directly select from,
and support a range of peripherals that make clock choice
nontrivial. The two clock systems also have differences that
test Power Clocks’s ability to generalize to different archi-
tectures.
4.1 Tock

Tock’s kernel code is split into code that is portable across
microcontrollers, and code that is specific to a chip or archi-
tecture. The ClockManager and ClockClient interfaces are
in the portable section of the kernel. Adapting chip-specific
drivers to work with Power Clocks requires at most a few
dozen lines of code. This code informs the ClockManager of
clock requirements and defers performing an operation until
it receives a callback.

Power Clocks requires changes to Tock’s scheduler to
have it notify the ClockManager when it’s time to change
the clock. The scheduler requests a clock change in one
of two situations. The first is just before the board goes to
sleep (the scheduler is about to issue a wait-for-interrupt,
or wfi instruction). This indicates that all applications have
yielded and the full set of parallel I/O operations have been
requested. At this point, the ClockManager chooses a clock
based on the request queue, as described in Section 3.5.

The second situation is when an application has spent
longer than a time quanta on computation, indicating long-
running computation. The time quanta used by Tock is 10ms.
When this happens, the scheduler notifies the ClockManager
that the application is doing compute, and if the ClockMan-
ager determines there are no active peripheral operations, it
changes to the low-energy (fast) clock.
4.2 Example Chip: SAM4L

The Atmel SAM4L has 64 kB of RAM and 512 kB of
flash. The SAM4L has seven clocks that can drive the sys-
tem clock, as shown in Table 2. Higher frequency clocks
are more expensive (more current) but more efficient (less
energy per clock tick).

Table 2: The current is measured with the SAM4L in RUN
mode, where the CPU and peripheral clocks are on and the
CPU is executing NOP instructions. Energy numbers are cal-
culated assuming a 3.3V voltage source.

Measured Energy/
Clock Freq Current Clock Tick

(MHz) (mA) (pJ)

RCSYS 0.113600 1.14 33116
RC1M 1 2.90 9570
RCFAST 4.3 4.12 3162

8.2 5.48 2205
12 6.36 1749

OSC0 16 6.76 1394
RC80M 80 11.28 465
DFLL 20-150 6.56-22.80 1082-502
PLL 48-240 11.90-26.70 818-367

Some clocks are configurable. RCFAST can be config-
ured to run at either 4, 8, or 12MHz. The PLL can be con-
figured to a frequency in the 48-240MHz range, and DFLL

(Digital FLL) to a frequency in the 20-150MHz range. These
extremely configurable frequency ranges can be useful if a
driver requests a specific clock frequency that none of the
constant frequency clocks can meet or be divided down to.
None of the SAM4L peripherals or external peripherals on
imix need this functionality, so our implementation does not
use it. Handling such cases is future work, when we en-
counter use cases for them.

The CPU can run at frequencies up to 48MHz, so higher
frequency clocks must be frequency divided before use.
Therefore, though RC80M seems to have the lowest en-
ergy/tick cost at 465pJ/tick, its effective energy/tick cost is
actually twice that, at 930pJ/tick, since it must be divided
down to 40MHz before use. The PLL at 48MHz therefore
has the lowest energy/tick cost, at 828pJ/tick. However, the
PLL can take half a millisecond to start up, such that the en-
ergy overhead of changing to the PLL makes it inefficient for
all but the longest computations. As a result, RC80M is used
as the low-energy clock.

The Power Clocks implementation for SAM4L treats RC-
SYS as a special case. Normally if a process enters compute
mode (it has spent longer than a time quanta on computa-
tion), Power Clocks will defer switching to a low-energy
clock if there are outstanding peripheral operations. How-
ever, if a process enters compute mode when RCSYS is in
use, Power Clocks will switch to a faster clock even if other
processes have active peripheral operations (as long as none
of those peripherals are no-jitter). RCSYS is so energy-
inefficient that the associated compute cycles just for driver
software become a significant cost. The only use case we’ve
found RCSYS to be energy-efficient for is waiting on infre-
quent GPIO interrupts, where computing is a tiny fraction of
application time.

4.3 Example Chip: K66
The second microcontroller we examine is the NXP K66.

The K66 has 256kB of RAM, 1MB of flash, and its core
can run at speeds up to 180MHz, its bus at up to 60MHz,
and its flash at up to 28MHz. The K66 has seven clock
sources which can be used to drive the CPU and peripher-
als. The primary clock in use is determined by the on-chip
multi clock generator (MCG), which can be configured into
one of eight different states, each enabling a different set
of output clocks. Changing from one clock to another on
the K66 requires transitioning along the MCG’s state dia-
gram. Some states serve as transition states and have multi-
ple clocks enabled, incurring correspondingly higher power
draws. Power Clocks minimizes time spent in those states,
only using them to transition between states with a single
clock in use. In cases where transitioning from one clock
to another requires passing through an intermediate clock,
Power Clocks ensures that active peripherals are compatible
with every intermediate clock that is used.

5 Evaluation
This section evaluates Power Clocks. It measures the

energy savings provided by Power Clocks on the SAM4L
over static clock choices by dynamically changing between
low-power and low-energy clocks, and compares how Power
Clocks does against optimal hand tuned clock changes. It

also measures Power Clocks’s energy savings when mul-
tiple independent applications run concurrently, something
which is impossible with application controlled power man-
agement. We quantify Power Clocks’s cost in code size and
clock cycles. Finally, we showcase Power Clocks’s gen-
erality by examining a port to a different MCU, the NXP
K66, and by discussing Power Clocks’s applicability to other
popular chips, STMicro’s STM32F303VCT6 and Nordic’s
nRF52840.

5.1 Methodology
All experiments labeled “Power Clocks” use the imple-

mentation described in Section 4. Static clock experiments
represent clock choices that optimize for either device or
compute operations. For experiments using the static low-
energy (fast) clock, we use the DFLL at 48MHz, because
it uses slightly less energy per tick than RC80M when no
clock changes are required, making for a fairer compari-
son. Hand tuned experiments use a version of Tock without
Power Clocks that simply exposes the clock change mech-
anism. Kernel hand tuned experiments represent the opti-
mal dynamic clock policy; they rewrite parts of the Tock
kernel to implement the application-optimal policy. Appli-
cation hand tuned experiments place optimal clock changes
in the application, representing what might be done by
a energy-conscious application developer with hardware-
specific knowledge.

We measured power using a RIGOL DS4024 oscilloscope
and voltage with a TI INA210-215 EVM current sense am-
plifier across a 1ohm resistor in series with the SAM4L’s
VCC. We use two representative applications to measure
clock management’s effects on energy efficiency.
5.1.1 Audio Classifier

The first application samples and processes audio to clas-
sify ambient noise events, for example to count vehicles on a
university campus [1]. The application periodically samples
125ms of audio at 31.5kHz from a microphone connected
to the ADC. It applies a Fourier transform to derive 7 fre-
quency bands, computes summary statistics for each band,
and sends them to a server using an IEEE802.15.14 radio.
Between samples the system is in a deep sleep state.

The ideal policy for this application transitions through
7 different clock stages. In deep sleep, it uses the lowest-
power clock, 32kHz RC32k. When it wakes up and starts
sampling, it uses the lowest energy clock, 80MHz RC80M.
ADC sampling requires a clock 32 times as fast as the sample
rate, 4MHz RCFAST4M. Computing the Fourier transform
uses RC80M. It sends the data to the radio over a 2MHz
SPI bus using RCFAST4M. It waits for the GPIO interrupt
from the radio with 1MHz RC1M. On the packet complete
interrupt, it goes back to RCFAST4M to send SPI commands
to turn off the radio, then returns to deep sleep in RC32k.
5.1.2 Groundwater Pollutants

The second application detects groundwater accumula-
tion and analyzes it for pollutants. [8] The application spends
most of its time in sleep, until rainfall generates enough
groundwater flow to close a circuit in an external sensor and
trigger a GPIO interrupt. It then measures pollutant levels
with I2C connected sensors. It compresses sensor readings,

0 100 200 300 400 500 600
Time (ms)

0

1

2

3

4

En
er

gy
 C

on
su

m
ed

 (m
J)

Power Clocks: 3.00 mJ

Static 48MHz: 4.29 mJ
Static 4MHz: 4.13 mJ

App Hand Tuned: 2.94 mJ
Kernel Hand Tuned: 2.90 mJ

Figure 3: Cumulative energy of the Audio Classifier appli-
cation using five clock policies. Power clocks is within 3%
of the hand tuned in-kernel policy and consumes 27% less
energy than the best static clock choice. Power Clocks per-
forms worse than hand-tuned clock choices because the com-
putation in the GPIO interrupt handler is much less efficient
with a 115 kHz clock than with a 1MHz or 4MHz clock.

detects anomalies, and finally writes the results to flash. In
our experimental version of this application, we emulate the
groundwater flow detector with a GPIO interrupt and pollu-
tant sensors with other I2C sensors supported by Tock: the
result is nearly identical to the original application.

This application progresses through 4 different clock
stages. Waiting for a GPIO interrupt uses a very slow clock
(RCSYS). Communicating with the I2C sensor at 400 kHz
requires at least a 4 MHz clock, so it uses RCFAST4M. The
flash abstraction writes in place, so uses a read, erase, write
cycle. The read uses the RC80M clock at 40 MHz while the
erase and write use RC1M at 1MHz.
5.2 Application Energy Consumption

We measured the energy consumption of each application
under Power Clocks and four other policies: statically choos-
ing the lowest-energy clock (DFLL 48MHz) and the lowest-
power clock (RCFAST at 4MHz), using an application hand
tuned policy, and using a kernel hand tuned policy.
5.2.1 Audio Classifier

Figure 3 shows the cumulative energy consumed by each
policy for the Audio Classifier application. Power Clocks
consumes 30% less energy than the static low-energy pol-
icy and 27% less than the static low-power policy. Power
Clocks consumes 2-3% more energy than hand-tuned poli-
cies. Figure 4 shows power-over-time profiles of four poli-
cies: lowest-power, lowest-energy, kernel hand tuned and
Power Clocks. Figure 4a shows that even when the static
RCFAST4M clock is used, power consumption varies de-
pending on what is active. Most of the application’s energy
is spent in computation because a low-power clock has a
higher per-tick cost. Figure 4b shows the power profile for
the application under a static DFLL clock. Sampling takes
the same amount of time as under RCFAST4M but draws
much more power. The computation, however, is 12x faster
and uses 66% less energy. The low-power clock is more effi-
cient for sampling, but the low-energy clock is more efficient
for computation: a dynamic policy that transitions between
them will be more efficient.

Figure 4c shows current draw under the ideal hand tuned

0 100 200 300 400
Time (ms)

0.0

2.5

5.0

7.5

10.0

Av
g.

 M
CU

 C
ur

re
nt

 (m
A) Sleep - RC32k

ADC Sampling - RCFAST4M
Computation - RCFAST4M
Radio - RCFAST4M

(a) Static RCFAST (4 MHz) - Low Power Clock - Energy: 4.13 mJ

0 100 200 300 400
Time (ms)

0.0

2.5

5.0

7.5

10.0

Av
g.

 M
CU

 C
ur

re
nt

 (m
A) Sleep - RC32k

ADC Sampling - DFLL
Computation - DFLL
Radio - DFLL

(b) Static DFLL (48 MHz) - Low Energy Clock - Energy: 4.29 mJ

0 100 200 300 400
Time (ms)

0.0

2.5

5.0

7.5

10.0

Av
g.

 M
CU

 C
ur

re
nt

 (m
A) Sleep - RC32k

Computation - RC80M
ADC Sampling - RCFAST4M
Radio SPI - RCFAST4M
GPIO poll - RC1M

(c) Kernel Hand Tuned - Energy: 2.90 mJ

0 100 200 300 400
Time (ms)

0.0

2.5

5.0

7.5

10.0

Av
g.

 M
CU

 C
ur

re
nt

 (m
A) Sleep - RC32k

Computation - RC80M
ADC Sampling - RCFAST4M
Computation - RCFAST4M
Radio SPI - RCFAST4M
GPIO poll - RCSYS

(d) Power Clocks- Energy: 3.00 mJ

Figure 4: Power profile of the Audio Classifier application
with different clock policies. Power Clocks picks the same
clock as the ideal hand-tuned policy, except that it waits for a
timeslice expiration to switch to a fast clock when the ADC
completes, and waits on the GPIO interrupt with RCSYS.

0 100 200 300 400
Time (ms)

0.0

2.5

5.0

7.5

10.0

Av
g.

 M
CU

 C
ur

re
nt

 (m
A) Sleep - RC32k

Computation - RC80M
ADC + SPI - RCFAST4M
ADC + Flash - RCFAST4M
ADC - RCFAST4M
Computation - RCFAST4M
Radio SPI - RCFAST4M
GPIO poll - RCSys

(a) Power Clocks- Energy: 3.51 mJ

Figure 5: Power profile with multiple applications when the
active periods of each app overlap. Power Clocks chooses
the correct clock even when devices with different preferred
clocks execute simultaneously, as evidenced by use of the
4MHz clock when app 1 ADC sampling occurs simultane-
ously with app 2 flash writes, although flash would use the
1MHz clock when executing alone. With multiple applica-
tions, an OS abstraction for clock management is the only
viable strategy for saving energy via dynamic clock selec-
tion.

Table 3: Energy consumption of the Groundwater Pollutants
app with 4 different clock management schemes over dif-
ferent operational periods. “Active only” refers to the time
before the application returns to waiting on an interrupt.

Scheme Measurement Time
Active Only 300 ms 1 day

Static 4MHz 0.47 mJ 2.33 mJ 407 J
Static 48MHz 0.55 mJ 5.69 mJ 1729 J
Hand Tuned 0.40 mJ 1.06 mJ 150 J
Power Clocks 0.41 mJ 1.07 mJ 150 J

policy, while Figure 4d shows Power Clocks, which has
nearly identical behavior to this ideal. There are two notable
differences. First, Power Clocks computes for a 10ms time
quanta using RCFAST4M before transitioning to an 80MHz
clock, while the hand-tuned implementation knows it is ex-
ecuting a long computation so switches to 80MHz immedi-
ately. This brief period of using a sub-optimal clock, plus
the CPU cycles of clock manager logic, leads to about 0.5%
energy overhead for Power Clocks. Second, Power Clocks
waits for a GPIO interrupt from the radio using RCSYS in-
stead of RC1M, adding another 2.5% overhead. The hand-
tuned policy can exploit the knowledge that the GPIO inter-
rupt from the radio will return very quickly, such that the en-
ergy cost of computing the interrupt handler with such an in-
efficient per-tick clock (RCSYS) outweighs the savings from
RCSYS being lower-power while waiting. The application
hand-tuned policy is less efficient than the kernel one due to
the overhead of making system calls to change the clock and
longer periods of executing the CPU at a lower-power clock
due to these boundary crossings.

5.2.2 Groundwater Contamination
Table 3 shows the energy consumption of the Ground-

water Contamination application under four policies as the

0 50 100 150 200 250 300
Time (ms)

0.0

0.5

1.0

1.5

2.0

2.5

En
er

gy
 C

on
su

m
ed

 (m
J) Static 48MHz: 5.69 mJ

Power Clocks: 1.07 mJ

Static 4MHz: 2.33 mJ

App Hand Tuned: 1.07 mJ
Kernel Hand Tuned: 1.06 mJ

GP
IO

 In
te

rru
pt

Return to sleep

Figure 6: Cumulative energy of the Groundwater Pollutants
application using five clock policies. All 3 dynamic policies
perform within 1% of one another, while consuming 54-55%
less energy than the best static clock choice over just a 300ms
period. The savings come from no static clock choice being
able to satisfy all device requirements and achieve lowest-
power operation while waiting for a GPIO interrupt.

0 100 200 300 400 500 600 700
Time (ms)

0

1

2

3

4

5

En
er

gy
 C

on
su

m
ed

 (m
J)

Power Clocks: 3.29 mJ

Static 48MHz: 4.68 mJ
Static 4MHz: 4.59 mJ

Figure 7: Cumulative energy of the multiple application ex-
ample when application execution overlaps. Power Clocks
uses 28% less energy than the best static clock and 6% less
than running the applications sequentially.

frequency of event detection changes. Over 300ms, the
three dynamic policies are all within 1% of each other, and
consume 54-55% less energy than the best static approach.
These savings come from the long periods when the applica-
tion waits for a GPIO interrupt, during which the clock dom-
inates power draw. Using a static clock, the clock must be
fast enough for I2C operations (4MHz), while with dynamic
clocks the system can drop down to RCSYS. Figure 6 shows
the cumulative energy consumed by each policy for the
Groundwater Contamination application when the sample
interval is 300ms: the long periods of GPIO waiting (the long
straight lines) dominate energy consumption. Power Clocks
achieves equivalent or slightly better energy efficiency than
hand-tuned approaches, without requiring application-level
energy management logic or an application-specific kernel.
5.3 Multiple Applications

To evaluate Power Clocks by its ability to efficiently coor-
dinate multiple simultaneously running apps, we flashed the
two apps described in Section 5.1 onto the same board. We
slightly modified the groundwater pollution app to collect
pollution measurements on a timer instead of in response to
a GPIO interrupt (otherwise waiting on GPIO interrupt dom-
inates consumption). We measure two scenarios - when their
active periods overlap and when they do not.

0 100 200 300 400 500 600 700
Time (ms)

0

1

2

3

4

5

En
er

gy
 C

on
su

m
ed

 (m
J)

Power Clocks: 3.51 mJ

Static 48MHz: 5.02 mJ
Static 4MHz: 4.68 mJ

Figure 8: Cumulative energy of the multiple application ex-
ample when the applications execute sequentially. Power
Clocks consumes 25% less energy than the best static clock.

Table 4: Code size (bytes) comparison

ROM diff

Tock 132,072 -
+ClockManager 134,344 2272
+ADC 135,184 840
+Flash 135,416 232
+GPIO 135,680 264
+I2C 135,848 168
+SPI 136,168 320
+USART 136,420 252

Total 4,348

Figure 7 shows the cumulative energy used when the ac-
tive section of both apps overlap. Over a 550ms period,
Power Clocks uses 28% less energy than the best possible
static clock choice. Figure 8 shows the cumulative energy
used when the apps trigger sequentially rather than simulta-
neously (perhaps as the result of non-overlapping timer expi-
rations). In this scenario, Power Clocks uses 25% less energy
than the best possible static clock choice. This difference
shows how Power Clocks can exploit overlapping device op-
erations to reduce total energy consumption. This agrees
with prior results that parallelizing I/O operations reduces
energy consumption [17]. When Power Clocks is used, over-
lapping app execution and then sleeping uses 6% less energy
than executing each app sequentially. Figure 5 shows the
power profile when both apps execute simultaneously.

5.4 Power Clocks Overhead
This section quantifies Power Clocks’s overheads in terms

of code size and CPU cycles: code size is a limiting resource

Table 5: CPU cycle overhead of Power Clocks. Overhead
scales with the number of clients because some calls iterate
across all active clients. For our example applications, the
most expensive operation is 1232 cycles, or 30µs at 40MHz.

Function no jitter jitter

make clock request 206–352 195–341
release clock request 124 194 + 30-36/client

clock change 812 + 210/client 812 + 210/client

in embedded systems and CPU cycles represent energy over-
head. Table 4 shows the Tock ROM use as ClockManager
and ClockClient support for drivers are added. ClockMan-
ager adds 2.3kB of code. Each ClockClient adds a further
168-840 bytes. These numbers are approximate because of
inlining and link-time optimization. For example, the ADC
adds the most (840 bytes) because of dead code elimina-
tion; when there are no ClockClients, the compiler elides
some some of ClockManager’s logic. Supporting all major
SAM4L devices adds a total of 4.4kB of code (3.3%); do-
ing so allows the kernel to automatically reduce energy con-
sumption by over 30%. There is no increase in RAM use.

Table 5 shows the CPU cycle costs of Power Clocks oper-
ations. This includes the logic in ClockManager but not the
configuration register writes to change the clock (since ev-
ery dynamic policy has this cost). Some operations require
iterating across pending or current requests (e.g., to calculate
the best clock) so their overhead increases with the number
of active clients. In the multiple application example (Sec-
tion 5.3), the largest number of active clients is 2 (ADC +
SPI). In such a workload most expensive operation in Power
Clocks is clock change, at 1232 cycles. On the 48MHz
SAM4L microcontroller on imix, this is 25µs; compared to
the hundreds of milliseconds that the applications execute,
this is a tiny overhead.
5.5 Generality

So far, this evaluation has focused on our implementation
of Power Clocks for the Atmel SAM4L. However, we be-
lieve Power Clocks is portable for use on other modern mi-
crocontrollers with different clock requirements. Here, we
present an analysis of our implementation for the K66. The
K66 has a complex clock system that is very different from
the SAM4L, including a state machine of allowable clock
changes that increases the overhead of dynamically chang-
ing clocks.

We evaluated our K66 Power Clocks implementation us-
ing a variation of the audio classifier application. The pri-
mary difference is that sending a radio packet is replaced
with writing data to flash, as the Teensy 3.6 does not have
an on-board radio. The FLL set at 96MHz is the low-energy
clock, and a 4MHz internal clock serves as the low-power
clock. However, the ADC can only divide the clock fre-
quency by up to 16 times, placing an upper bound on the
clock frequencies it can accept. As such, a 16MHz clock is
the effective static low-energy clock for comparison. On this
platform, Power Clocks achieves 35% energy savings when
compared with the best static clock choice when running this
example application, as shown in Figure 9.

Though we have not yet implemented Power Clocks on
any additional platforms, we can consider two other rep-
resentative chips from popular families of different ven-
dors. The STMicro STM32F303VCT6 (the core for the
STM32F3Discovery platform) [29] is representative of the
STMicro STM32 family and is a popular selection for ultra-
low cost systems. The Nordic nRF52840 [23] is represen-
tative of the Nordic nRF5x family, a popular selection for
end-user applications such as iBeacon tags due to its clear
documentation and higher levels of hardware abstraction.

The STM32F3 chip has a similar clock model to the

0 100 200 300 400 500
Time (ms)

0

2

4

6

8

10

E
n
e
rg

y
 C

o
n
su

m
e
d
 (

m
J)

Static 4MHz: 9.38 mJ
Static 16MHz: 9.06 mJ

App Hand Tuned: 5.59 mJ
Kernel Hand Tuned: 5.33 mJ

Power Clocks: 5.87 mJ

Figure 9: Cumulative energy of the Audio Classifier appli-
cation with flash instead of radio for the K66. Power Clocks
consumes 35% less than the best static clock. Power Clocks
uses more energy than hand-tuned since it waits for a 10ms
time quanta before switching clocks during compute, and has
an extra transition to/from the low-energy clock at the end.

SAM4L: it has RUN, SLEEP, and STANDBY power modes,
and three clock sources that can drive the system clock.
Clock control is left to software. Given this similarity, we
believe that Power Clocks could offer similar gains on this
platform as was demonstrated on the SAM4L and K66.

The nRF52840 generates two primary clocks: a high fre-
quency (64MHz) and a low frequency (32kHz) clock. The
high frequency clock drives the CPU, and is also divided
to generate 1/16/32MHz peripheral clocks. Power Clocks
cannot be applied as the nRF52840 uses a hardware clock
controller that automatically distributes clocks to peripher-
als based on their clock requirements. Software only needs
to ensure the clock source is enabled before a peripheral re-
quires the clock, which can be done once during initializa-
tion. However, the nRF52840’s clock management system is
limited in its energy savings. Generating slower peripheral
clocks from a 64MHz clock source is equivalent to always
using the fastest clock and dividing it down with peripheral
specific clock divisors. As long as there are active periph-
erals, the 64MHz clock must always be generated, even if
those peripherals only require a 1MHz clock.

6 Related Work
Reducing energy consumption in computer systems has

been an active area of research since the late 1990s. Power
Clocks complements and builds on this body of work to be
the first system to automatically minimize the energy con-
sumption of active devices in embedded systems. Prior work
falls into four major categories: minimizing duty-cycle, trad-
ing off performance for efficiency, energy management by
the OS, and clock configuration tools.
6.1 Minimizing Duty Cycle

Active power draw, such as time spent executing instruc-
tions or transmitting on a radio, is usually 1-2 orders of mag-
nitude higher than other system states. The typical first step
to reduce energy consumption is duty-cycling: minimizing
time spent in the active state. Embedded operating systems
such as TinyOS [19] and Tock [20] place the microcontroller
in a sleep mode whenever the processor is idle, while Con-
tiki [5] leaves controlling the duty cycle to the application.

Integrated concurrency and energy management (ICEM)

uses asynchronous I/O to minimize device active time, so
the kernel can group and schedule requests efficiently. [18]
Power Clocks’s asynchronous clock request API borrows
from ICEM’s use of asynchronous locks to protect shared re-
sources. ICEM, however, was designed for older embedded
systems with a single clock source: it saves energy by min-
imizing completion time. Power Clocks generalizes this to
manage multiple clocks and their interactions with devices.

Dynamic Power Management (DPM) is a refinement of
duty-cycle based techniques to support a variety of low-
power modes on modern microcontrollers. DPM allows an
OS to automatically transition between different low power
modes based on the requirements of device drivers and ap-
plications. [2] TI-RTOS [14] is an example of a commercial
RTOS that provides robust DPM support. TI-RTOS drivers
declare dependencies on hardware resources and allowable
sleep modes, and a centralized power manager automatically
configures clock gates and power domains. TI-RTOS also
handles transitions into low power modes, respecting depen-
dencies of certain drivers on higher power sleep modes.

DPM-like approaches represent the extent of auto-
matic low power approaches on embedded OSes today.
Zephyr [24] allows for automatic transitions between low
power states, but any more complex power control mech-
anisms are left to the application. Contiki and FreeRTOS
leave clock management to applications.

Generally, DPM differs from Power Clocks in several sig-
nificant ways. DPM does not reduce active power by config-
uring the core clock speed - a single static clock is used for all
wake periods. Further, kernel-based DPM power managers
generally run in the idle loop, and thus cannot make any opti-
mizations based on peripheral operations completing if those
peripheral operations trigger any other work.
6.2 Trading Off Performance for Efficiency

In traditional systems, CPU active power can dominate
a device’s energy budget. Dynamic voltage and frequency
scaling (DVFS) allows a device to trade off performance
for efficiency. [31]. The fundamental problem in DVFS is
predicting future CPU utilization and correctly handling pe-
riodic (e.g., multimedia) workloads [9]. Vertigo [6] and
GRACE-OS [32] demonstrated that if applications provide
information about their future intentions, the operating sys-
tem can be more energy efficient without degrading appli-
cation performance. These techniques have been widely
adopted in sensor networks, laptops [7], smart phones [10],
and cloud workloads [15].

What Power Clocks does is superficially similar to DVFS,
since both result in the system dynamically changing fre-
quency in order to save energy. However, Power Clocks
changes the frequency because low power clocks are more
energy-efficient for I/O bound operations and low energy
clocks are more energy-efficient for compute operations,
whereas DVFS changes the frequency because doing so al-
lows to save energy by lowering the voltage.

[2] describes a wealth of energy-aware scheduling algo-
rithms for real time systems, based on DVFS algorithms.
These algorithms focus on using the minimum clock fre-
quency (and thus voltage) without ever missing application
specified deadlines. In addition to being inapplicable on

MCUs that do not support voltage scaling, these techniques
miss many of the benefits of Power Clocks. Most real-time
DVFS algorithms require a periodic task model, a require-
ment which most WSN OSes (Zephyr, Contiki, TinyOS,
Tock) avoid because of the burden it places on application
developers. Further, these algorithms largely require that all
tasks being scheduled can operate at any of the available pro-
cessor speeds, and that the tasks are robust to clock-speed
changes even while a task is running. On the systems that
Power Clocks targets, these assumptions only hold if seper-
ate dedicated clocks are used for peripherals, which elimi-
nates the power savings from sharing a single clock.
6.3 Energy Management

Another body of related work explores how an operating
system can manage energy as a resource. The seminal paper
in this body of work proposes “Currentcy” as a new resource
to consider when scheduling, akin to disk quotas. [33] Im-
plemented in ECOSystem, Currentcy is much simpler than
prior approaches like Nemesis OS that are grounded in eco-
nomic models. [22] The Cinder operating system extends
these ideas further, simultaneously allowing an OS to man-
age both energy and power. [26]

Applications supporting a range of output quality levels
(“approximate computing”) interact with an OS to choose a
trade-off between quality and lifetime. In Odyssey, a power
manager “viceroy” provides feedback to adjust the output
quality of a variety of applications to meet a system lifetime
goal [7]. More recently, JouleGuard introduces a crisp con-
trol theoretic framework with provable guarantees. [13]

Pixie OS applies these techniques to embedded systems,
proposing resource aware programming. Applications in
Pixie OS are structured as dataflow graphs, with individ-
ual processing elements reacting to available resources [21]
Power Clocks complements this work; while they seek to
manage how quickly energy is consumed, Power Clocks
seeks to reduce the cost of individual operations, thereby al-
lowing a given energy budget to perform more work.
6.4 Clock Configuration Tools

Many modern microcontrollers have complex clock trees,
where sets of devices can run off different clock sources,
with complex constraints as to which clocks and frequencies
can be used. Given the complexity of correctly configur-
ing a system, there exist tools such as STM32CubeMX [30]
for STM32 microcontrollers, which adjusts bus frequencies,
timers, and devices to work with the user’s selection of clock
sources, frequencies, and divider values.

Power Clocks is similar to STM32CubeMX in that it ad-
justs bus frequencies, timers, and devices to work with dif-
ferent clock sources. Unlike the STM32CubeMX, which
does this configuration once in expectation of a static clock
source, Power Clocks does dynamic configuration as the
clock source changes. Further, STM32CubeMX allows for
configuration of multiple clock sources to reduce response
times, while Power Clocks only uses one system clock at a
time in order to minimize energy usage.

7 Conclusion + Future Work
Power Clocks is designed to reduce a microcontroller’s

energy usage by allowing it to dynamically change its clock

to reflect changes in application state. It selects an energy-
optimizing clock for any combination of application states at
the cost of requiring that all operations are serviced asyn-
chronously. Power Clocks is implemented entirely in the
kernel and requires no changes to application code. Power
Clocks achieves significant (> 25%) energy savings in both
single and multiple app scenarios.

Prior work has shown that deadlines can be used by RTOS
systems to improve energy efficiency. Power Clocks re-
lies on heuristics for estimating task duration, but creating a
deadline aware Power Clocks algorithm is an interesting area
of future work that could provide further efficiency improve-
ments. Power Clocks shows that kernel-managed, dynamic
clock-source selection is a promising method for achieving
energy savings in low power devices.

8 References
[1] J. Adkins, B. Ghena, N. Jackson, P. Pannuto, S. Rohrer, B. Campbell,

and P. Dutta. The signpost platform for city-scale sensing. In Proceed-
ings of the 17th ACM/IEEE International Conference on Information
Processing in Sensor Networks, IPSN 2018, Porto, Portugal, April 11-
13, 2018, pages 188–199, 2018.

[2] M. Bambagini, M. Marinoni, H. Aydin, and G. Buttazzo. Energy-
aware scheduling for real-time systems: A survey. ACM Transactions
on Embedded Computing Systems (TECS), 15(1):1–34, 2016.

[3] S. Dawson-Haggerty, A. Krioukov, and D. E. Culler. Power
optimization-a reality check. EECS Department, University of Cal-
ifornia, Berkeley, Tech. Rep. UCB/EECS-2009-140, 2009.

[4] D. W. Dobberpuhl, R. T. Witek, R. Allmon, R. Anglin, D. Bertucci,
S. Britton, L. Chao, R. A. Conrad, D. E. Dever, B. Gieseke, S. M. N.
Hassoun, G. W. Hoeppner, K. Kuchler, M. Ladd, B. M. Leary, L. Mad-
den, E. J. McLellan, D. R. Meyer, J. Montanaro, D. A. Priore, V. Ra-
jagopalan, S. Samudrala, and S. Santhanam. A 200-mhz 64-b dual-
issue cmos microprocessor. IEEE Journal of Solid-State Circuits,
27(11):1555–1567, 1992.

[5] A. Dunkels, B. Grnvall, and T. Voigt. Contiki - a lightweight and
flexible operating system for tiny networked sensors. In Proceedings
of the First IEEE Workshop on Embedded Networked Sensors 2004,
IEEE EmNetS-I, Nov. 2004.

[6] K. Flautner and T. Mudge. Vertigo: automatic performance-setting
for linux. In Proceedings of the 5th symposium on Operating systems
design and implementation, OSDI 02, pages 105–116, New York, NY,
USA, 2002. ACM Press.

[7] J. Flinn and M. Satyanarayanan. Energy-aware adaptation for mobile
applications. In Proceedings of the Seventeenth ACM Symposium on
Operating Systems Principles, SOSP ’99, pages 48–63, New York,
NY, USA, 1999. ACM.

[8] J. Frigo, H. Ayers, V. Kulathumani, S. Hinzey, S. Sevanto, M. Priocou,
X. Yang, K. Mccabe, A. Saari, and K. Sentz. Novel wsn hardware for
long range low power monitoring. In 2017 13th International Con-
ference on Distributed Computing in Sensor Systems (DCOSS), pages
89–92, June 2017.

[9] K. Govil, E. Chan, and H. Wasserman. Comparing algorithms for dy-
namic speed-setting of a low-power cpu. In Proceedings of the 1st
Annual International Conference on Mobile Computing and Network-
ing, MobiCom ’95, pages 13–25, New York, NY, USA, 1995. ACM.

[10] D. Grunwald, C. B. Morrey, III, P. Levis, M. Neufeld, and K. I. Farkas.
Policies for dynamic clock scheduling. In Proceedings of the 4th Con-
ference on Symposium on Operating System Design & Implementation
- Volume 4, OSDI’00, Berkeley, CA, USA, 2000. USENIX Associa-
tion.

[11] A. Guldahl. https://www.embedded.com/
understanding-mcu-sleep-modes-and-energy-savings/.

[12] J. L. Hill, R. Szewczyk, A. Woo, S. Hollar, D. E. Culler, and K. S. J.
Pister. System architecture directions for networked sensors. In
ASPLOS-IX Proceedings of the 9th International Conference on Ar-
chitectural Support for Programming Languages and Operating Sys-

tems, Cambridge, MA, USA, November 12-15, 2000., pages 93–104,
2000.

[13] H. Hoffmann. Jouleguard: Energy guarantees for approximate appli-
cations. In Proceedings of the 25th Symposium on Operating Systems
Principles, SOSP ’15, pages 198–214, New York, NY, USA, 2015.
ACM.

[14] T. Instruments. Ti-rtos: Real-time operating system (rtos) for micro-
controllers (mcu), 2017.

[15] C. M. Kamga. Cpu frequency emulation based on dvfs. SIGOPS Oper.
Syst. Rev., 47(3):34–41, Nov. 2013.

[16] Kinetis K66 Series Microcontrollers. https://www.nxp.com/docs/
en/data-sheet/K66P144M180SF5V2.pdf.

[17] K. Klues, V. Handziski, C. Lu, A. Wolisz, D. Culler, D. Gay, and
P. Levis. Integrating concurrency control and energy management in
device drivers. SIGOPS Oper. Syst. Rev., 41(6):251–264, Oct. 2007.

[18] K. Klues, V. Handziski, C. Lu, A. Wolisz, D. Culler, D. Gay, and
P. Levis. Integrating concurrency control and energy management in
device drivers. In Proceedings of Twenty-first ACM SIGOPS Sym-
posium on Operating Systems Principles, SOSP ’07, pages 251–264,
New York, NY, USA, 2007. ACM.

[19] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse,
A. Woo, D. Gay, J. Hill, M. Welsh, E. Brewer, et al. Tinyos: An
operating system for sensor networks. In Ambient intelligence, pages
115–148. Springer, 2005.

[20] A. Levy, B. Campbell, B. Ghena, D. B. Giffin, P. Pannuto, P. Dutta,
and P. Levis. Multiprogramming a 64kb computer safely and effi-
ciently. In Proceedings of the 26th Symposium on Operating Systems
Principles, SOSP ’17, pages 234–251, New York, NY, USA, 2017.
ACM.

[21] K. Lorincz, B.-r. Chen, J. Waterman, G. Werner-Allen, and M. Welsh.
Resource aware programming in the pixie os. In Proceedings of the
6th ACM Conference on Embedded Network Sensor Systems, SenSys
’08, pages 211–224, New York, NY, USA, 2008. ACM.

[22] R. Neugebauer and D. McAuley. Energy is just another resource: En-
ergy accounting and energy pricing in the nemesis OS. In Proceedings
of HotOS-VIII: 8th Workshop on Hot Topics in Operating Systems,
May 20-23, 2001, Elmau/Oberbayern, Germany, pages 67–72, 2001.

[23] NRF52840 System on Chip. https://www.nordicsemi.com/
Products/Low-power-short-range-wireless/nRF52840.

[24] Z. Project, 2019.
[25] T. Rault, A. Bouabdallah, and Y. Challal. Energy efficiency in wireless

sensor networks: A top-down survey. Computer Networks, 67:104–
122, 2014.

[26] A. Roy, S. M. Rumble, R. Stutsman, P. Levis, D. Mazières, and N. Zel-
dovich. Energy management in mobile devices with the cinder oper-
ating system. In Proceedings of the Sixth Conference on Computer
Systems, EuroSys ’11, page 139152, New York, NY, USA, 2011. As-
sociation for Computing Machinery.

[27] A. SAM4L. https://www.microchip.com/wwwproducts/en/
ATSAM4LC4C.

[28] F. K. Shaikh and S. Zeadally. Energy harvesting in wireless sensor net-
works: A comprehensive review. Renewable and Sustainable Energy
Reviews, 55:1041–1054, 2016.

[29] STM32F3 ARM Cortex-M4 Microcontrollers. https:
//www.st.com/en/microcontrollers-microprocessors/
stm32f3-series.html.

[30] STMicroelectronics. Um1718 user manual. https://www.st.com/
resource/en/user_manual/dm00104712.pdf, 2019.

[31] M. Weiser, B. Welch, A. Demers, and S. Shenker. Scheduling for
reduced cpu energy. In Mobile Computing, pages 449–471. Springer,
1994.

[32] W. Yuan and K. Nahrstedt. Energy-efficient soft real-time cpu
scheduling for mobile multimedia systems. In Proceedings of the
Nineteenth ACM Symposium on Operating Systems Principles, SOSP
’03, pages 149–163, New York, NY, USA, 2003. ACM Press.

[33] H. Zeng, C. S. Ellis, A. R. Lebeck, and A. Vahdat. Currentcy: A
unifying abstraction for expressing energy management policies. In
Proceedings of the General Track: 2003 USENIX Annual Technical
Conference, June 9-14, 2003, San Antonio, Texas, USA, pages 43–56,
2003.

