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Abstract—The infrastructure available to large-scale and
medium-scale web services now spans dozens of geographically
dispersed datacenters. Deploying across many datacenters has
the potential to significantly reduce end-user latency by serving
users nearer their location. However, deploying across many
datacenters requires the backend storage system be partially
replicated. In turn, this can sacrifice the low latency benefits
of many datacenters, especially when a storage system provides
guarantees on what operations will observe.

We present the K2 storage system that provides lower latency
for large-scale and medium-scale web services using partial
replication of data over many datacenters with strong guaran-
tees: causal consistency, read-only transactions, and write-only
transactions. K2 provides the best possible worst-case latency for
partial replication, a single round trip to remote datacenters, and
often avoids sending any requests to far away datacenters using
a novel replication approach, write-only transaction algorithm,
and read-only transaction algorithm.

I. INTRODUCTION

The infrastructure necessary for large-scale web services
and available to medium-scale web services now includes
resources in many geographically dispersed datacenters. The
sheer size of large-scale services requires they deploy across
many datacenters—Google has 24 datacenters [27] and Face-
book has 15 datacenters [21]. Medium-scale services that can
be fully deployed in a few datacenters also have the option of
deploying across many datacenters due to the proliferation of
available locations on cloud platforms [6], [26], [44].

Deploying a service across many datacenters has the poten-
tial to significantly decrease its latency for end-users through
increased proximity. For instance, users of a social network
in Australia can have significantly faster interactions with the
service when their requests are handled entirely in Australia
instead of needing to go to another continent. This requires
that both the frontend web server that is handling the user’s
requests be in Australia and the backend storage system that
holds the data of the social network—e.g., friend lists, status
updates—be in Australia. Spreading a service’s frontend web
servers across many datacenters does not change the required
number of web servers because each does disjoint work; 100
servers in 1 datacenter and 10 servers in each of 10 datacenters
can handle the same number of user requests. Fully replicating
a backend storage system across many datacenters, however,
proportionally increases its costs because each replica in each
datacenter does the same work of storing and serving all
the data. This makes full replication across many datacenters
economically infeasible. Instead, the large-scale services that

must use many datacenters partially replicate their data by
storing only a subset of it in each datacenter [7], [20].

Partial replication of data, however, can eliminate the
latency benefits of many datacenters and even increase a
service’s latency compared to full replication over a few
datacenters. The latency benefit is eliminated if a datacenter
does not have the required data for a request and needs to go
to a far-away datacenter once. A service’s latency is worse if
the storage system needs to go to a far-away datacenter more
than once: it would have been faster to send the user’s request
to that far-away datacenter and handle all its backend accesses
there. We contend this is why medium-scale web services
typically stick to full replication over a few datacenters.

Further complicating matters are the guarantees the data
store provides. These guarantees include consistency, i.e., what
interleavings of write operations are visible to reads; and
transactions, i.e., what operations can appear to be grouped
into an atomic block. These guarantees enable and simplify
correct application logic, for example, by ensuring a referent
and reference appear in the correct order, as well as reduce
user-visible anomalies. In storage systems that provide such
guarantees over partially-replicated data, multiple round trips
to far-away datacenters would be common, leading to even
higher latency experienced by end-users and dwarfing the
benefits of having many datacenters closer to them (§II).

We present K2, a storage system that provides lower la-
tency for large-scale and medium-scale web services using
partial replication of data over many datacenters. K2 provides
guarantees that achieve a sweet spot in the tradeoff between
the strength of abstraction and low latency: causal consistency,
read-only transactions, and write-only transactions. Prior work
that supports stronger guarantees is incompatible with low
latency; while prior work that achieves low latency does not
support any type of transactions.

K2 unlocks low latency for these guarantees by realizing
two design goals. First, it has at most one parallel round of
non-blocking requests to far-away datacenters. Second, it often
avoids sending any requests to far away datacenters. The first
goal ensures K2 has latency no worse than fully replicating
across a few datacenters while the second goal provides lower
latency for most requests.

K2’s design includes several components that work together
to achieve these goals. First, K2 fully replicates metadata and
runs its algorithms primarily on that metadata. This enables it
to directly use an existing mechanism for causal consistency:
one-hop dependency checking [39]. Providing transactions,



however, remains challenging because existing mechanisms
do not achieve either of our design goals. Existing write-
only transactions algorithms cause cross-datacenter requests
to block and result in latency worse than a fully-replicated
system. To bound its worst case, K2 introduces a constrained
replication topology and a new write-only transaction algo-
rithm. Constraining replication ensures each datacenter knows
where to read consistent values. The new write-only transac-
tion algorithm decouples the visibility of data for local reads
from remote reads to ensure local reads remain consistent
while ensuring remote reads never block.

To provide local datacenter latency in the common case,
K2 integrates a small cache in each datacenter and introduces
a cache-aware read-only transaction algorithm. The algorithm
maximizes its ability to use cached data while ensuring con-
sistency and isolation. This enables read-only transactions to
often be handled locally with zero cross-datacenter requests.
K2 also uses the cache to provide low latency for write-only
transactions by committing them locally.

Our evaluation of K2 compares to an adaption of a fully
replicated system to work with partial replication and a con-
currently developed system that provides causal consistency
with transactions over partially replicated data. We find that
K2 has significantly lower latency than the baselines in all
evaluated settings.

In summary, the primary contribution of this paper is the
first design that realizes the low latency benefit of many
datacenters for the strong guarantees of causal consistency,
read-only, and write-only transactions. Read-only transactions
achieve low latency because they require zero cross-datacenter
requests in the common case and one round of non-blocking
requests in the worst case. K2’s design achieves this through its
novel replication approach, write-only transaction algorithm,
and read-only transaction algorithm.

II. BACKGROUND AND MOTIVATION

This section provides background, motivates partial replica-
tion, and identifies our design goals.

A. Background

Figure 1 shows the general structure of web services. They
are distributed across several datacenters with frontends that
handle user requests by executing application code that reads
and writes data from a backend storage system. To match
common terminology, we use clients to refer to frontends and
servers to refer to backend storage servers.

Together, the backend storage servers provide a set of
programming abstractions and accompanying guarantees to the
frontend application servers for manipulating an application’s
data. Stronger guarantees, such as transactions, simplify ap-
plication development by reducing the number of states and
edge cases that a programmer needs to reason about.
Targeted Guarantees. We target guarantees that provide a
sweet spot in the tradeoff between the strength of the abstrac-
tion provided by a storage system and its latency: causal con-
sistency, read-only transactions, and write-only transactions.
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Fig. 1: Web services are made up of frontends and back-
end storage servers spread across datacenters. Large services
deploy across many datacenters, e.g., A–I. Medium services
often only deploy across a few datacenters, e.g., A–C. K2 im-
proves latency for large services and enables medium services
to also improve their latency by using many datacenters.

Stronger guarantees require cross-datacenter requests [10],
[15], [25], [37] and thus cannot reap the low latency benefits
of many datacenters. Weaker guarantees are harder to program
against without being necessary for low latency.

This makes K2 suitable for the large set of applications
that prioritize low latency over the strongest guarantees (e.g.,
read-write transactions with strict serializability) such as social
networks, collaborative filtering, and encyclopedias. It is even
suitable for sensitive applications such as access-control: K2’s
guarantees are sufficiently strong for Zanzibar, Google’s global
authorization system [45].

Causal consistency provides a partial order over operations
that ensures causality, which has three rules [2], [35]: if an
operation a happens before an operation b in the same thread
of execution, then a→ b, meaning that b is causally after a;
if an operation a writes the value v to the variable x, and an
operation b reads the value v from x, then a→ b; if a→ b and
b→ c, then a→ c.

Read-only transactions are a group of read operations that
appear to all read from a single consistent state of the data
store. The read operations can span data that is spread across
many different shards of the data store. Grouping them in a
transaction in effect combines them into a single operation. In
K2, the group of reads will see the same, causally-consistent
state of the data store.

Write-only transactions are a group of write operations that
appear to all take effect at the same time. They can also span
data spread across many different shards. Write-only trans-
actions are fully isolated from other write-only transactions
and read-only transactions. Thus, a read-only transaction will
either see all or none of a write-only transaction.
Partial Replication. Large-scale web services like Google
and Facebook are typically deployed across many datacenters,
e.g., all 9 in Figure 1. Deploying across so many datacenters
necessitates partially replicating data to only a subset of the
datacenters [7], [20]. K2 is designed to provide lower latency
for such large-scale services for whom partial replication is
necessary. We are also motivated to provide lower latency for
the much larger number of medium-scale services for whom
partial replication over many datacenters is a deployment
option and not a requirement.
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Fig. 2: User latency for requests to frontend web servers (FE) that access backend storage (BE).

B. Partial Replication for the Many

Using many datacenters is not required for medium-scale
web services. Sufficient resources are available on cloud
platforms to store all data and handle all user requests. These
services can place all frontend and backends in 1 datacenter,
e.g., on the West Coast (A). While West Coast users would
get low latency, those elsewhere like Japan would have high
latency from connecting to a far-away datacenter. A better
option is to place frontends and backends in 3 geographically
dispersed datacenters, e.g., West Coast (A), Europe (B), and
Japan (C). This reduces user latency by serving requests closer
to them. And, because data is typically replicated 3× for fault
tolerance, moving from 1 to 3 datacenters has little effect
on the cost of the deployment. Yet, it leaves many users
still connecting to far-away datacenters, e.g., Australian users.
Figure 2a shows such a connection to a far-away frontend.

One option would be to place frontends and fully replicated
backends in a large number of datacenters. Unfortunately,
this option is expensive. For instance, moving from 3 to 9
datacenters would roughly triple costs as the 6 additional
replicas of data are not necessary for fault tolerance.

An appealing alternative is to deploy a service with fron-
tends and partially replicated storage with 1/3 of the data in
each datacenter. The cost for such a deployment would be
roughly the same as using 3 datacenters with full replication.
Such a deployment, however, can result in higher latency for
end users if storage servers in the nearby datacenter contact
far-away datacenters multiple times. This is not a concern for
storage systems that provide eventual consistency because any
data can be returned with any other data.

In storage systems that provide stronger guarantees—e.g.,
causal consistency—multiple round trips to far-away data-
centers would be common. For instance, consider deploying
a storage system in a configuration we call replicas across
datacenters (RAD) where 1/3 of each replica is placed in
each of the 9 datacenters. In this setting, the COPS [38] and
Eiger [39] systems would require as many 2 and 3 sequential
round-trips to far-away datacenters respectively. In COPS and
Eiger, a first round optimistically reads data, and a second
round is required if the data returned in the first round is
inconsistent. Eiger incurs an additional delay of one round-trip

between datacenters to check the status of pending updates if
the requested data is being modified by ongoing transactions.
Even 2 round-trips result in higher latency than a deployment
with full replicas in 3 datacenters as shown in Figure 2b.
Avoiding such scenarios motivates our first design goal.
Design Goal 1: At Most One Round of Non-Blocking
Cross-Datacenter Requests. When a partially-replicated stor-
age system needs at most one round of cross-datacenter
requests that do not block its latency will at worst be similar
to having full replicas in 3 datacenters, as shown in Figure 2c.
Design Goal 2: Often Zero Cross-Datacenter Requests.
Achieving design goal 1 gives K2 the best possible worst-
case end-user latency, matching full replication. But it is also
no better. To provide a latency benefit K2 must avoid cross-
datacenter requests in the common case. Such a scenario is
shown in Figure 2d. This scenario is possible in a RAD
deployments. However, it is unlikely as it requires all the data
needed to serve a user’s request to be in the 1/3 of data located
in the nearby datacenter. Our design goal 2 is thus to often
complete with zero rounds of cross-datacenter requests.

III. K2 BASIC DESIGN

This section presents the basic architecture of K2. Sec-
tions IV presents the replication design in K2. Section V
completes the design with our read-only transaction algorithm.

Figure 3 shows the architecture of K2. We base our design
on fully-replicated Eiger [39]. K2 inherits the mechanisms
for tracking and enforcing causal consistency, local write-
only transactions, and garbage collection from Eiger. The
major changes in our design include our new algorithms
for replication, cache-aware read-only transactions, and an
LRU-like cache replacement policy. We also introduce some
changes to Eiger’s replicated write-only transaction algorithm
to achieve our design goal 1.

A. Server Side Design

Within each datacenter, the keyspace is sharded across
servers that are each responsible for a subset of the keyspace.
For simplicity, our discussion here focuses on the simple
key-value storage model, though our implementation uses the
richer column-family data model [18], [34].
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Fig. 3: The system architecture of K2. Each datacenter has the
entire keyspace sharded across servers, and a small amount of
cache. It stores data for a subset of keys and only metadata
for the rest. K2 partially replicates data and fully replicates
metadata by following a constrained topology.

Data and Metadata. Each datacenter stores the metadata for
the entire keyspace and data (i.e., values) for a subset of keys.
Metadata includes a key and a version number, which uniquely
identifies the value of this key and is assigned by the datacenter
that wrote this version. If a datacenter D always stores the
value of a key K, then D is a replica datacenter of K, and
K is a replica key in D. If D does not always store the value
of K, then D is a non-replica datacenter of K, and K is a
non-replica key in D. The value for each key is stored in a
set of f datacenters, which tolerates up to f −1 simultaneous
datacenter failures. We assume the mapping of keys to their
f replica datacenters is known to each datacenter.
Cache. K2 augments each server with a small amount of cache
containing additional values. K2 uses its cache to help achieve
our design goal 2 of often avoiding any cross-datacenter
requests. K2 caches a value of a non-replica key after fetching
it from remote datacenters. K2 also temporarily caches the
values for the writes of non-replica keys from local clients.
An advantage of the cache in K2 is that writes of non-replica
keys can commit locally and thus have low latency. K2’s
read-only transaction algorithm leverages the cached values
to often avoid cross-datacenter requests and satisfy read-only
transactions entirely in the local datacenter. We implement an
LRU-like cache-eviction policy.
Clock. Servers and clients keep Lamport clocks [35], which
advance upon message exchange. All operations are uniquely
identified by a Lamport timestamp. The high-order bits of the
timestamp are the Lamport clock, and the low-order bits are
the unique identifier of the stamping machine.

B. Client Library

Each client has a client library that works in tandem with
the storage servers. The library has two roles: First, it is the
interface between the client and the storage system. Second,
it tracks and attaches metadata to requests to help ensure that
writes appear in a causally-consistent order.

The client library routes operations to the appropriate
servers in the local datacenter and executes the read-only
transaction and write-only transaction algorithms. It helps the

storage systems ensure writes appear in a causally-consistent
order using two types of metadata. The first is by attaching a
unique Lamport timestamp to each write. Storage servers use
these timestamps with a last-writer-wins policy [54] to ensure
causally later writes always overwrite earlier ones [38]. The
second type of metadata the client library tracks is explicit
causal dependencies. The client library tracks only the one-
hop dependencies, deps, that include the client’s previous write
and the writes of all values it has read since that write. Lamport
timestamps combined with explicit one-hop dependencies are
sufficient to ensure causal consistency while introducing less
overhead than vector clocks [39].

Each dependency is a <key, version> pair. The client
library updates its deps after a read-only or write-only trans-
action completes. It includes deps when it sends write-only
transactions to the local datacenter. The dependencies are
then used during inter-datacenter replication to enforce causal
consistency. Using one-hop dependencies frees servers from
needing to store metadata about causal dependencies and is
sufficient for enforcing causal consistency [39].

C. Local Write-Only Transactions

In K2, a client commits its write-only transactions in its
local datacenter by following a variant of the two-phase
commit protocol [50]. The client splits keys into sub-requests
and sends each to the corresponding servers—i.e., partici-
pants—in the local datacenter. It picks one key at random
to be the coordinator-key. The participant holding this key is
the coordinator and the others are cohorts. Each participant
prepares by marking the keys in its sub-request as pending and
sends Yes to the coordinator. Once all cohorts prepare, the co-
ordinator assigns its current logical time (Lamport timestamp)
as the version number and the earliest valid time (EVT) of
this transaction. The version number uniquely identifies this
transaction, and is used in other datacenters to apply writes
in the correct causal order. The EVT indicates the logical
time when the new versions are made visible in a datacenter,
and is used locally in this datacenter as part of the read-only
transaction protocol. The coordinator commits the transaction,
sends each cohort a Commit that includes the version number
and EVT. It then replies to the client with the version number.
If writing to a non-replica key, the server commits only the
metadata—i.e., the key, version, and EVT—and caches the
value. Caching the write reduces read latency by avoiding
unnecessary remote fetches for this value. The client library
updates its deps and the read timestamp (§V) to maintain
causal consistency. It updates deps by first clearing it and then
adding the <coordinator-key, version> pair to deps.

IV. REPLICATION DESIGN

This section presents K2’s replication design (§IV-A), and
how its design decisions progressively build on each other to
provide at most one round of non-blocking cross-datacenter
read requests (§IV-B).



A. Replication Design

Metadata Replication and Constrained Replication Topol-
ogy. Metadata replication decouples data and metadata repli-
cation. It replicates the metadata of a write—i.e., key, version,
and dependencies—to all datacenters, and replicates the data
of a write—the value—only to replica datacenters. Con-
strained replication topology orders the replication to replica
datacenters before the replication to non-replica datacenters.
Replication of Write-Only Transactions. Replication of a
write-only transaction is done by each participant (coordi-
nator/cohort) in its local datacenter after it commits locally
(§III-C). Each participant asynchronously replicates each key
in its sub-request to its equivalent participants—the servers
storing the same key—in other datacenters in two phases.
In the first phase, the local participant replicates data and
metadata to the replica participants in parallel. When a
participant receives a replicated write that includes data, it
immediately stores it in the IncomingWrites table before
sending an acknowledgment to the sender. Once the local
participant has been notified by all replica participants, it
proceeds to the second phase. In the second phase, it replicates
the metadata and the list of replicas storing the value to the
non-replica participants. Only the coordinator needs to include
causal dependencies with its metadata replication because each
remote coordinator does dependency checks for its transaction
group. K2’s replication is asynchronous and not on-path for
client-facing operations. Hence, it does not affect the latency
of any client’s operations. K2 introduces the IncomingWrites
table to make the new data accessible only to remote reads
while the transaction is pending. This table is not visible to
local reads.
Committing Replicated Write-Only Transactions. Repli-
cated write-only transactions are committed using a protocol
that is a variant of two-phase commit. Each cohort notifies
its transaction coordinator after receiving the replicated sub-
request of the transaction. Concurrently, the coordinator issues
the dependency checks for the transaction by contacting the
local servers responsible for those dependencies. A local
server replies to the dependency check immediately if the
specified <key, version> is committed, otherwise it waits
until it is committed to reply. The coordinator then waits for
all dependencies to verify and to be notified by all cohorts
before beginning two-phase commit. This waiting for one-hop
dependencies before applying replicated writes provides causal
consistency [39]. The coordinator sends each cohort a Prepare.
Once all cohorts reply, it sets this transaction’s EVT to its
current logical time, commits the transaction, and sends each
cohort a Commit that includes EVT. Each participant deletes
this transaction’s sub-request from the IncomingWrites table
after it commits the transaction.
Multiversioning Framework and Applying Replicated
Writes. K2 keeps multiple versions of a key for a short time.
Multiversioning enables K2’s efficient read-only transaction
algorithm. How a server applies a write depends on the current
version it has for a specified key and if it is storing the data.

When applying a write a server compares its version number
with the version number of its most recent write to the same
key. The version numbers are assigned by the datacenters
that accept the writes based on Lamport timestamps and are
consistent with the causal ordering of writes. Thus, a server
should only make the write visible to local reads if its version
number is greater than its most recent write. For non-replica
servers, this results in them either applying the write if it is
newer than the current value or discarding it entirely if it is not.
This procedure would not be safe for replica servers, however,
because the write might be needed to serve a remote read.
Replica servers thus apply the write in all cases, store it in
the multiversioning framework, and make it available only to
remote reads if it is older than the current value.
Garbage Collection (GC). K2 keeps a version around if it
is not older than 5 s, or this version or any of its earlier
versions has been accessed by the first round of a read-only
transaction within the past 5 s, the configurable transaction
timeout. K2 performs garbage collection lazily whenever a
new version of a key is inserted and then removes any old
versions that do not satisfy either of the two conditions. GC is
a common component in multiversioning data stores to keep
memory and storage footprints low [38], [39], [51]. K2’s GC
is similar to Eiger’s [39] with the addition of keeping around
all versions not older than 5 s to enable our cache-aware read-
only transaction algorithm.

B. Rationale and Key Insights

K2’s replication design differs significantly from past work
and is what ensures at most one round of non-blocking cross-
datacenter requests. At the lowest level is K2’s metadata
replication design that ensures at most one round of cross-
datacenter requests. Above that K2 layers a constrained repli-
cation topology and a write-only transaction algorithm that
together ensure cross-datacenter requests do not block.
Metadata Replication. Partial replication of the data gives K2
most of the storage capacity benefit of a partially-replicated
storage system, while full replication of the metadata enables
K2 to achieve at most one round of cross-datacenter requests.
The key insight is that metadata is all that is necessary to
determine what data a client can consistently read. K2 fully
replicates metadata, consistently updates metadata in each
datacenter, and then runs its read-only transaction algorithm
on that consistent metadata in the local datacenter to determine
consistent data versions. Then, only a single round of cross-
datacenter read requests is required if the consistent versions
are not stored locally. K2 can thus avoid multiple unnecessary
rounds of cross-datacenter requests to figure out consistent
data values to read.

Decoupling data and metadata replication, however, intro-
duces a new challenge that can lead to blocking. The metadata
replication in a non-replica datacenter can race ahead of data
replication in replica datacenter. Then, when the non-replica
datacenter requests a specific value from the replica datacenter
its request will need to block until that value arrives. K2
overcomes this challenge to ensure cross-datacenter requests



do not block with its constrained replication topology and
write-only transaction algorithm.
Constrained Replication Topology. K2’s constrained repli-
cation carefully orders how data and metadata are replicated
to replica and non-replica datacenters to ensure a datacenter
always knows where to read a value without blocking. This
ordering provides an important invariant: once a non-replica
datacenter learns about an update, the value must be available
from each of the replica datacenters.

This invariant is sufficient to ensure cross-datacenter re-
quests do not block for writes to individual keys. It, however,
breaks existing algorithms for write transactions that atomi-
cally update multiple keys. These existing algorithms include
general transaction algorithms like two-phase locking and
optimistic concurrency control as well as specialized write-
only transaction algorithms like Eiger’s [39]. The existing
algorithms break because they include two-phase commit,
which waits for all participants in a transaction to prepare
successfully before any commit. For example, consider a write
transaction that updates keys A and B that are replicated in
disjoint datacenters. Using the invariant, the replica datacenters
for key A will not be able to prepare non-replica key B until
they know it has committed in its replica datacenters and thus
is available for reads. But the same is true for the replica
datacenters for key B, they will not be able to prepare non-
replica key A until they know it has committed. Thus, the
different sets of replicas are deadlocked and never commit. K2
sidesteps this issue with its write-only transaction algorithm.
Replicated Write-Only Transactions. The key insight behind
K2’s write-only transaction algorithm is to decouple the avail-
ability of data for remote reads from its availability for local
reads. Data should be available for remote reads immediately
and for as long as necessary to ensure remote reads can be
served without blocking. While data should be available for
local reads only when it satisfies the guarantees of the storage
system. This decoupling allows K2 to provide its invariant
that ensures remote reads do not block. It breaks down into
two cases: before and after a replica datacenter applies a
write to make it visible to local reads. Before a write is
applied, K2 makes it available only to remote reads through
the IncomingWrites table. This is safe since K2 ensures that
the remote read only requests a version that is already causally
consistent in the requesting datacenter. After a write is applied,
K2 keeps it in the multiversioning framework until it can be
safely garbage collected.

V. READ-ONLY TRANSACTIONS

This section completes K2’s design by describing our cache-
aware, read-only transaction algorithm. The algorithm is built
around two key insights that allow it to often avoid any
cross-datacenter requests: cache awareness and trading a little
freshness for a lot of performance.

A. Cache Awareness

The read-only transaction algorithm exploits the temporal
locality of data access by leveraging the data cached as part
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Fig. 4: A and C are non-replica keys, B is a replica key.
a1 and c1 are cached versions. A straw-man solution incurs
unnecessary remote fetches, while K2’s read-only transaction
reuses cached versions when safe.

of K2’s design. Caching values which are likely to be accessed
again soon [5], [9], [17], [28], [48] avoids unnecessary remote
fetches of the same data. For instance, after Alice uploads a
new photo (cache after write), she is likely to verify the upload
was successful by downloading it (read the cached photo).
Similarly, after Bob reads a photo (cache after remote fetch),
the same photo will likely be recommended to Bob’s friends
(read the cached photo). The benefits of caching are even more
promising for real-world applications, which usually exhibit
Zipfian workloads, i.e., most operations are on a small subset
of the data. For instance, Facebook’s TAO caching system
reported an overall hit rate of 96.4% [16].

Caching makes it possible to avoid many cross-datacenter
requests. The challenge, however, is realizing this possibility
with our read-only transaction algorithm. Previous algorithms
focused on providing low latency and consistency. Our algo-
rithm adds the need to reuse cached values.

B. Trading Freshness for Performance

K2’s read-only transactions provide causal consistency.
Causal consistency has two properties we can leverage to
achieve better read performance. First, it does not require
a read to reflect the most recent updates, commonly known
as the real-time requirement in stronger consistency models,
e.g., linearizability [30]. Second, it does not require all clients
to advance their views of the system at the same rate: it is
technically causally consistent if the system keeps making a
client read at a fixed timestamp that only advances when the
client issues writes. Our algorithm does much better than this
as we guarantee that clients make progress through the garbage
collection that safely discards any versions older than 5s. In
addition, in our evaluation we find much lower staleness with
a median of no staleness at all.

With these two observations in mind, we explore the pos-
sibility of avoiding remote fetches by allowing each client
to maintain and manage its read timestamp, which could be
slightly stale but for which most non-replica items have cached
values. For instance, in Figure 4, a straw-man solution for
read-only transactions is to read at the most-recent timestamp,
12. However, this will incur two unnecessary remote fetches on
A2 and C2 since those versions are not present locally. Instead,
K2’s read-only transaction algorithm reads at timestamp 3
since both A and C have cached values at that timestamp.



1 function read_txn(<keys>):
2 vers[][] = [][], vals[] = []
3 for k in keys: /* 1st round */
4 vers[k] = read(k, cli.read_ts)
5 ts = find_ts(vers)
6 for k in keys:
7 for ver in vers[k]:
8 if ver.evt ≤ ts ≤ ver.lvt and
9 ver.val != null:

10 vals[k] = ver.val; break
11 if !vals.contains(k): /* 2nd round */
12 vals[k] = read_by_time(k, ts)
13 cli.read_ts = max(cli.read_ts, ts)
14 for k in keys: deps.add(k, vals[k].ver)
15 return vals

Fig. 5: Pseudocode for read-only transaction.

C. Read-only Transaction Algorithm

Figure 5 shows the pseudocode for K2’s read-only trans-
action algorithm at a client. Each client maintains a read
timestamp read_ts, and includes this timestamp when it
sends read-only transaction requests to the servers. The client
begins with a round of parallel requests to the servers in its
local datacenter. Each server returns all visible versions of each
key in its request that are valid at or after read_ts. Each
version includes the version number, EVT, LVT, and value if
it is stored or cached locally. The LVT (latest valid time) of a
version is the latest logical time before it is overwritten by a
new version. The server returns its current logical time for LVT
if the version is the latest. The server returns an empty value
if the version or any of its earlier versions are pending. (The
empty value indicates that the a version is potentially being
modified by some ongoing write-only transactions.) The client
examines the returned versions and finds a consistent logical
time ts that minimizes cross-datacenter requests. Specifically,
find_ts examines the EVTs of all returned versions. It finds
the earliest EVT where either (1) all keys have a valid value, or
(2) all non-replica keys have a valid value, or (3) the most keys
have a valid value. This procedure for picking the effective
logical time is what makes our algorithm cache-aware.

A second round of read requests is required if a key has no
consistent version or value at ts. If the key is being modified
by pending write-only transactions earlier than ts, the server
waits for the pending transactions to commit. This waiting
does not appreciably affect latency because the longest a write-
only transaction will remain pending is a single roundtrip
within the local datacenter (from the cohorts to the coordinator
and back). Once the pending transactions commit, the server
determines the committed version at time ts, and returns
the value if it is available. If not, the server sends a remote
read request to its equivalent server in the nearest replica
datacenter to fetch the value given the key and the version
number. Our constrained replication topology and write-only
transaction algorithm ensure the requested version will be
accessible in the replica datacenter. The remote server checks
its IncomingWrites table and multiversioning framework for
the requested version, and sends its value to the requesting

server. Upon receiving the response, the local server caches the
value and replies to the client. To maintain causal consistency,
the client updates its read_ts and dependencies. It also
advances read_ts to max(read_ts, write_ts) after it
completes a local write-only transaction that returns a write
timestamp write_ts (§III-C).

VI. FAULT TOLERANCE

This section describes unimplemented extensions to K2 for
handling failures and enabling clients to switch datacenters.
These extensions are similar to prior work [38], [39].

A. Handling Failures

Server failures within a DC: Server failures are unavoidable
in practice. K2 can provide availability for a logical server
despite failures using a fault-tolerant protocol like Paxos [36]
or Chain Replication [55].
Datacenter failures: With a replication factor of f , K2
assumes up to f − 1 replica datacenters can fail. Replicating
writes to replica datacenters can proceed if at least one replica
datacenter of each key in those writes is available. The non-
replica datacenters can send their remote read requests to
the available replica datacenters. Permanent datacenter failures
(e.g., a datacenter being destroyed by a tsunami) may lead to
data loss in K2 if a local datacenter is destroyed after replying
to a client’s write request but before successfully replicating
them to any other datacenter. This cost of achieving low
latency for local writes that return faster than inter-datacenter
latency is inevitable [38], [39]. Transient failures (e.g., tem-
porary power failures) do not result in data loss. However,
the local (temporarily failed) datacenter should replicate its
pending updates to other datacenters once it is restored.

B. Switching Datacenters

The clients of K2 are frontend servers co-located in the
same datacenters as the backend storage servers of K2 (§II-A).
These clients will continue to access their co-located servers.
The users they issue operations on behalf of, however, may
wish to switch datacenters, e.g., after flying to another part
of the world. K2 can allow users to switch datacenters using
the following steps: (0) Dependencies are propagated back to
users, e.g., in an HTTP cookie. (1) When a user switches to a
new datacenter it sends its dependencies to its frontend, e.g.,
the user request includes the cookie. (2) That frontend checks
(by polling with reads) and waits until all dependencies (which
includes its last write and all its reads since the last write)
are satisfied by the metadata in the local datacenter. (3) That
frontend then uses the included dependencies for this user.
Steps 0 and 1 ensure the new frontend knows the dependencies
for this user. Step 2 ensures all causal dependencies are present
in the new datacenter. Step 3 ensures later operations on behalf
of this user include the correct dependencies.

VII. EVALUATION

Our evaluation compares K2 to RAD, a baseline that
directly adapts causal consistency for partial replication, and



VA CA SP LDN TYO
CA 60
SP 146 194

LDN 76 136 214
TYO 162 110 269 233

SG 243 178 333 163 68

Fig. 6: Round trip latencies in ms between datacenters emu-
lated on Emulab and based on EC2 measurements.

PaRiS?, a baseline that uses a per-client cache [51], to
understand the improvements and tradeoffs of K2’s design.
Specifically, our evaluation answers these questions:
§VII-C What improvement in latency does K2 provide?
§VII-D How does the throughput and write latency of K2

compare to the RAD baseline?
§VII-D What staleness does K2’s new read-only transaction

algorithm introduce?

A. Implementation and Baseline

K2 is implemented as a modification to the Java codebase of
Eiger, a scalable geo-replicated storage system that provides
causal consistency [39]. The major changes in our implemen-
tation include our new algorithms for replication, write-only
transactions, read-only transactions, LRU-like cache replace-
ment policy, and garbage collection.
Replicas Across Datacenters (RAD). We use a direct adapta-
tion of scalable causal consistency to partial replication as our
baseline for comparison. We compare to RAD because it is a
reasonable adaptation of a fully-replicated causal consistency
design to a partially replicated setting. To implement RAD, we
configure Eiger to split data in each replica across datacenters,
which together form a replica group. Clients send read and
write requests directly to the datacenters in its group that hold
the relevant keys. A datacenter in a group needs to replicate
writes to its equivalent datacenters, which hold the same key
ranges, in other groups. Before committing a replicated write,
a datacenter sends dependency checks to other datacenters in
its group. It applies the replicated write once all dependencies
are satisfied. RAD uses Eiger’s read-only and write-only
transaction algorithms.

It is not straightforward to adapt the design of Eiger to
make efficient use of a cache. Eiger’s read-only transaction
algorithm’s first round returns the currently visible value for
each key within a replica. A local datacenter cache would only
contain previously read values and would not know if these
values were still visible. All first round requests for non-replica
keys would thus need to contact a remote datacenter. This
precludes the possibility of achieving zero cross-datacenter
requests, which is the purpose of our cache. Thus, our RAD
baseline does not include a datacenter cache.
PaRiS?. We also implement another baseline, PaRiS?, which
uses a per-client cache and has at most one round of reads [51].
PaRiS? implements a subset of the full design of PaRiS and
provides slightly optimistic lower-bounds on the latency of a
full PaRiS implementation. We modify K2’s implementation
to augment each client with a private cache as in PaRiS. A
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Fig. 7: Comparing K2 and RAD on EC2 and Emulab with
the default workload. Results are similar with K2 providing a
significant improvement at all percentiles: its average latency
improvement is 297 ms on EC2 and 243 ms on Emulab.

client’s recent writes are kept in its cache for 5 s. This is longer
than they would be in cache for a full PaRiS implementation
which will clear them once their timestamp is passed by the
Universal Stable Time. PaRiS?’s read-only transactions take at
most one round of non-blocking remote reads as in PaRiS.

B. Experimental Setup

Most experiments are run on the Emulab testbed [57] where
we have exclusive bare-metal access to 72 machines. Each
machine has one 2.4GHz 64-bit 8-Core E5-2630 “Haswell”
processor, 64GB 2133MT/s DDR4 RAM, and are networked
with 1Gbps Ethernet. Emulab machines are physically co-
located so we emulate the latency between datacenters. We
validate this use of emulated latency on Emulab by running
some experiments on Amazon EC2 in geo-distributed regions.
On EC2 we use t3.2xlarge instances, which have CPU and
memory specifications comparable to the machines on Emulab
testbed: each has 8 virtual CPUs and 32GB of memory.
Configuration and Workloads. We use 72 machines config-
ured as 6 datacenters with 4 servers and 8 co-located clients
in each. Machines in the Emulab testbed are physically co-
located, so we use Linux’s tc to emulate wide-area latency
between datacenters. To emulate a globally-distributed de-
ployment, we choose locations that are spread around the
world: Virginia (VA), California (CA), São Paulo (SP), London
(LDN), Tokyo (TYO), and Singapore (SG). The wide-area
latencies are based on latencies between EC2 regions [11].

Each set of clients reads from and writes to their local data-
center. We measure system throughput as the total throughput
of all datacenters. We generate the workload using Eiger’s
benchmarking system with SNOW’s [40] addition of Zipf
request generation. All experiments use 1 million keys, 128
byte values, 5 keys per operation, and 5 columns per key.
Unless otherwise specified all experiments use a cache size of
5% of the total keys, a Zipf constant of 1.2, a write percentage
of 1%, a write-only transaction percentage of 50% (of writes),
and a replication factor of 2. We experimentally vary each of
these parameters to observe their effect.

Most experiments use a write percentage of 1% because
most workloads are read heavy. Our choice of 1% is a
compromise between the 0.2% writes reported for Facebook’s
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(a) Read-only (0% writes)
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(b) High skew (zipf=1.4)
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(c) High replication factor (f=3)
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(d) High write percentage (5%)
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(e) Moderate skew (zipf=0.9)
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Fig. 8: Read-only transaction latency. K2 provides significantly lower latency than PaRiS? and RAD at all percentiles for all
tested workloads. The average improvement of K2 over PaRiS? and RAD is 53–165 ms and 88–297 ms, respectively.

production TAO system [16], and the 5% writes in YCSB’s
workload B [19]. We also evaluate with other write percent-
ages that match realistic workloads: 0.0% (YCSB’s workload
C [19]), 0.1% (approximate write percentage reported for
Google’s advertising backend F1 on Spanner [20]), 0.2%
(Facebook’s production TAO system), 5% (YCSB’s workload
B). Most experiments use a Zipf constant of 1.2 because
most workloads are highly skewed. We are not aware of
specific skew numbers for storage systems like K2, so we
based skew on the reported access characteristics of Facebook
photos [31]. Facebook photos were reported to follow a power-
law distribution with α = 1.84, which is equivalent to a Zipf
constant of 1.2. We test with Zipf constants as low as 0.9 and
high as 1.4. A Zipf constant of 1.4 is equivalent to the α = 1.72
power-law distribution observed for Facebook videos [53].
Methodology. To fairly configure our later experiments we
probed the operation of each system under increasing load.
For each system in the latency experiments, we choose the
number of closed-loop client threads on each of the 48 client
machines where the system operates at medium load. This is in
the appropriate range for production systems [56] and reduces
the effect of queuing delays. Each data point we report is the
median of 3 trials that each last for 12 minutes. This duration
is sufficiently long to warm up the cache, i.e., most keys are
requested at least once. We omit the first 9 minutes and the
last 20 seconds of each trial to exclude the cache warm-up
period and experimental artifacts.
Validating results on Amazon EC2. We deploy K2 and RAD
on Amazon EC2 datacenters in the six different locations
with actual wide-area latency shown in Figure 6. Network
bandwidth is not the bottleneck in our evaluation settings.
K2’s write-only transaction latency is low on both EC2 and

Emulab since K2 commits writes locally and its commit is not
affected by the network delay. Figure 7 shows the CDFs of
read-only transaction latency under default settings. There are
three differences in the results. First, EC2 results are smoother
due to slight variations in actual latency and noise from the
virtualized environment. Second, the EC2 results have a longer
tail: the 99.9th percentile latency is ~1 second for K2 and
~1.4 seconds for RAD. Third, the latency improvement of
K2 is higher on EC2 than it is on Emulab: the average
latency improvement on EC2 is 297 ms and 243 ms on Emulab.
We observe that the distributions and trends are similar on
Emulab with emulated latency and on EC2 with actual wide-
area delays. We are thus confident that results from Emulab
with emulated latency are indicative of deployments on cloud
platforms. If there is any appreciable difference, it is that K2
latency improvement would be greater in a deployment on
a cloud platform. We run experiments on Emulab for higher
repeatability and lower cost.

C. Read Latency Improvement

K2 is designed to decrease the latency of read-only transac-
tions over partially replicated storage. Figure 8 shows the la-
tency of read-only transactions in K2, RAD, and PaRiS? under
a variety of workloads. We find that K2 significantly improves
latency compared to RAD and PaRiS? at all percentiles in all
evaluated workloads. The magnitude of these improvements
varies with the workload. In most workloads, K2 provides an
average latency improvement of 140–297 ms over RAD, and
53–165 ms over PaRiS?. This significant latency improvement
of K2 over the baselines is enabled by K2’s novel design which
optimizes latency of read-only transactions by providing all-



Default Replication Write (%) Zipf Cache (%)
f=1 f=3 0.1 5 0.9 1.4 1 15

K2 41.6 21.1 53.7 47.7 26.0 21.3 46.3 30.9 44.3
RAD 24.8 11.7 51.9 59.0 20.2 85.4 14.8 24.8 24.8

Fig. 9: Throughput (K txns/sec) under different settings.

local latency more often and guaranteeing the best possible
worst-case latency.
More All-Local Latency. RAD does not cache non-replica
data in datacenters, so any read-only transaction that accesses
non-replica data must go to a remote datacenter. This happens
>99% of the time in all workloads as shown by RAD’s 1st
percentile latency being >60ms, the lowest inter-datacenter
latency. PaRiS? uses a per-client cache to keep client’s recent
writes. PaRiS? provides local latency when all requested keys
are replica keys or are stored in the client’s private cache.
This happens <6% of the time in all workloads as shown
by PaRiS?’s 6th percentile latency being >60ms. >95%
of PaRiS?’s read-only transactions must contact a remote
datacenter and thus incur high latency. K2 caches a small
percentage of non-replica data in each datacenter and uses
them when safe. This allows K2 to serve many read-only
transactions entirely locally.

K2 provides local latency for 19–83% of read-only trans-
actions depending on the workload. K2’s most significant
improvements are for the highly skewed workload (8b), the
high replication factor (8c), and the read-only workload (8a).
Its smallest improvement comes with a moderately skewed
workload (8e). This is as expected because more skewed
workloads are easier to cache. The percentage of transactions
with all-local latency decreases with a higher write percentage
(8d) and with a lower replication factor (8f). These changes
are also due to changes in the effectiveness of the cache. For
instance, increasing the replication factor from 2 to 3 results
in 33% less non-replica data vying for a spot in the cache.
Best Possible Worst-Case Latency. K2 and PaRiS? achieve
the best possible worst-case latency for read-only transactions
on partially-replicated data: they need at most one inter-
datacenter round trip to fetch the values of non-replica keys.
In contrast, RAD needs two inter-datacenter round-trips if
the non-replica keys fetched in the first round of the read-
only transaction are not consistent. Figures 8b, 8d, and 8f
show workloads where RAD issues the second round of
remote reads often: high skew, high write percentage, and low
replication factor. In each of these workloads 91–98% of read-
only transactions take two wide-area rounds.
Facebook TAO Workload. We experiment with a syn-
thetic workload that uses the value sizes, columns/key, and
keys/operations reported for Facebook’s TAO system [16],
[39]. We use the default Zipf constant of 1.2 since it is not
reported in TAO. We find that K2 provides local latency for
73% of read-only transactions, while PaRiS? and RAD achieve
local latency for <1% of read-only transactions.

D. Throughput, Write Latency, Staleness

Throughput Comparison. K2 aims to avoid remote reads

by leveraging cached values and thus can potentially improve
throughput by reducing the number of requests in the system.
However, K2 has three sources of overhead: replicating meta-
data to non-replicas, doing dependency checks before applying
replicated metadata, and returning multiple versions in its
read-only transaction algorithm. We quantify the throughput
overhead of K2 compared to RAD.

Figure 9 shows the peak throughput of the systems for
several settings using the minimum and maximum values of
each parameter while keeping the others at their default. We
observe that in many settings (e.g., high write percentage of
5%, and highly skewed Zipf constant of 1.4), K2 provides
higher throughput than RAD. Under these workloads, RAD
often needs the second round of reads to request consistent
versions of the contended keys and is bottlenecked by a small
set of servers. K2 avoids the bottleneck better by allowing
each datacenter to read a slightly older, consistent version of
highly contended keys from its local cache, and thus avoids
imposing high remote read loads on the replica datacenters of
those keys. In some settings (e.g., a moderately skewed Zipf
constant of 0.9), we find that RAD has higher throughput than
K2. Unlike K2, each datacenter in RAD handles dependency
checks and replication for only replica keys, leaving more CPU
and memory capacity to serve local client requests.
Write Latency. K2 achieves much lower write latency than
RAD for single-key writes and write-only transactions because
K2 can commit write operations locally, while RAD often must
contact remote datacenters. For instance, under our default
settings K2’s 99th percentile latency is 23 ms for write-only
transactions while RAD’s 50th percentile latency is 147 ms for
simple writes and 201 ms for write-only transactions.
Data Staleness. K2 aims to satisfy read requests entirely in-
side a local datacenter by leveraging older cached versions and
thus accepts some staleness for better performance. Staleness
is measured on servers as the time since a newer version of
that key has been written. For instance, if the returned version
is the newest version on the server, the staleness is 0. Or, if the
returned version was overwritten by a newer version 100ms
ago, the staleness is 100ms. RAD provide 0 staleness if its
read-only transactions complete in one round. We quantified
the staleness in K2 for write percentages between 0.1–5%. The
median staleness is 0 ms for all cases, 75th percentile staleness
is 105ms or less, and 99th percentile staleness is between 516
and 1117 ms. We expect this staleness to be an acceptable
tradeoff for the lower latency provided by K2.

VIII. RELATED WORK

This section reviews previous partially replicated systems,
fully replicated systems, and systems that provide causal con-
sistency. K2 is primarily distinguished by being the first work
to realize the low latency benefit of many datacenters with
strong guarantees: causal consistency, read-only transactions,
and write-only transactions.
Partially-Replicated Data Stores. PRACTI [12] is a classical
partial replication system that supports topology independence,
i.e., any-to-any replica propagation, and provides arbitrary



consistency. K2 builds on PRACTI’s insight to separate the
control path (metadata) and the data path (data replication).
One difference in K2 is our use of a cache—and our algorithms
that exploit it for many clients—in each datacenter, and
the constrained replication topology to provide non-blocking
remote reads. More importantly, PRACTI was designed for a
different era when all data that would be accessed together
could fit on a single machine. Hence, its design is based on
exchanging logs of serialized updates and is not scalable, i.e., it
is designed for at most one shard in what are now datacenters.

Karma [41] is concurrent work on enabling a causally-
consistent data store to support partial replication that uses
an approach similar to the replicas across datacenters baseline
we compare to in our evaluation. It focuses on allowing clients
to switch the datacenter to which they are connected and
enabling simple reads from a cache in a datacenter; it does
not support write-only transactions or read-only transactions.
K2, in contrast, does not focus on allowing clients to switch
datacenters though it could be extended to do so (§VI-B). K2
focuses on providing write-only and read-only transactions.

Spanner [20] is Google’s globally-distributed data store,
which provides strict serializability and partial replication.
K2 targets a much lower latency setting than Spanner with
guarantees that are compatible with handling all reads inside
the local datacenter as well as trading away some capacity for
significant read latency improvements from caching.

PaRiS [51] is a concurrently developed causally-consistent
data store that supports partial replication. PaRiS uses per-
client private caches and a universal stable time (UST) to
provide causal read-write transactions, which are stronger than
K2’s guarantees. K2’s guarantees are, however, still useful for
a large set of applications (§II-A). PaRiS provides at most
one round of non-blocking cross-datacenter requests like K2.
PaRiS handles read-only transactions locally only when all
requested keys are either replicated in this datacenter or are
stored in the client’s private cache because the client has writ-
ten to them since the UST. As our experimental comparison
with PaRiS? shows, this occurs rarely. In contrast, K2 is able
to often handle read-only transactions locally. Similarly, PaRiS
requires write transactions to contact remote datacenters except
when all keys are replicated in this datacenter. In contrast, K2’s
write-only transactions always commit to the local cache.

PaRiS’s use of per-client private caches and K2’s per-
datacenter shared caches are quite different. PaRiS’s per-client
cache is necessary for correctness. They cannot be shared be-
tween clients because they contain newer-than-UST state and
thus it would be unsafe for one client to read data from another
client’s private cache. K2’s per-datacenter shared caches, in
contrast, are safely shared between all clients in a datacenter
and enable K2 to often handle read-only transactions locally.
Improving Partial Replication. Volley [1], Tuba [8], and
Akkio [7] deal with data placement and migration for partially
replicated systems. They optimize data placement policies and
dynamically migrate data to different replicas based on system
logs to satisfy user requirements and reduce operational costs.
This line of work is orthogonal to K2, which operates indepen-

dently of any placement policy. Integrating such policies into
K2 could further reduce latency by increasing the likelihood
that a read’s local datacenter is a replica datacenter.

Saturn [14] and C3 [24] focus on improving the throughput
and data visibility latency of a partially-replicated data store
through novel metadata propagation and causal-consistency
enforcing algorithms. Saturn and C3, however, only support
simple read and write operations. K2, in contrast, focuses on
achieving lower latency for partial replication with stronger
guarantees: read-only and write-only transactions.

Partial replication has also been studied in file systems [29],
[42], [49]. This work focused on detecting and repairing
conflicting updates [29], [42] or enabling good performance
by aggressively creating new replicas. K2 instead focuses on
higher-layer concerns like consistency and transactions.
Cache-Aware Read-Only Transactions. TxCache [47] uses
a set of caches to increase the throughput of an underlying
monolithic database while providing serializability within an
application specified staleness bound. It uses a cache-aware
read-only transaction algorithm that starts with a set of pinned
snapshots identifiers from the underlying database and refines
the set of acceptable identifiers as a transaction proceeds.
TxCache’s algorithm influenced our design, but it cannot be
applied to our setting because we do not have a monolithic
database that can pin snapshots of all the data. Instead, K2
determines if the local datacenter has cached values that can
be used in a consistent snapshot dynamically.
Causal Consistency. Causal consistency is provided by many
systems [2], [3], [12], [13], [24], [32], [33], [38], [39],
[43], [46], [51], [52]. Excluding PRACTI [12], C3 [24] and
PaRiS [51], all these systems are built atop fully replicated
data stores and inevitably suffer from its limitations. We based
our design and implementation on fully-replicated Eiger [39].
Since Eiger, there have been many innovations [4], [14], [22]–
[24] in reducing the granularity of metadata for tracking causal
consistency and thus decreasing the throughput overhead of
enforcing causal consistency in datacenters. These innovations
are orthogonal to our contributions here; we believe it would
be straightforward (though time-consuming) to incorporate
these designs into K2 to achieve higher throughput.

IX. CONCLUSION

Deploying web services across many datacenters has the
potential to significantly reduce end-user latency. Realizing
this lower latency, however, is complicated by the need to
partially replicate data in the backend storage system. K2 is a
partially-replicated storage system that unlocks low latency
for the strong guarantees of causal consistency, read-only
transactions, and write-only transactions.
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[45] Ruoming Pang, Ramón Cáceres, Mike Burrows, Zhifeng Chen, Pratik

Dave, Nathan Germer, Alexander Golynski, Kevin Graney, Nina Kang,
Lea Kissner, and et al. Zanzibar: Google’s consistent, global authoriza-
tion system. In ATC, 2019.

[46] Karin Petersen, Mike J. Spreitzer, Douglas B. Terry, Marvin M. Theimer,
and Alan J. Demers. Flexible update propagation for weakly consistent
replication. In SOSP, 1997.

[47] Dan R.K. Ports, Austin T. Clements, Irene Zhang, Samuel Madden, and
Barbara Liskov. Transactional consistency and automatic management
in an application data cache. In OSDI, 2010.

[48] Luigi Rizzo and Lorenzo Vicisano. Replacement policies for a proxy
cache. IEEE/ACM Transactions on Networking, 8(2), 2000.

[49] Yasushi Saito, Christos Karamanolis, Magnus Karlsson, and Mallik
Mahalingam. Taming aggressive replication in the Pangaea wide-area
file system. SIGOPS Oper. Syst. Rev., 36(SI), 2002.

[50] Dale Skeen and Michael Stonebraker. A formal model of crash recovery
in a distributed system. IEEE Trans. Info. Theory, 9(3), 1983.

[51] K. Spirovska, D. Didona, and W. Zwaenepoel. Paris: Causally consistent
transactions with non-blocking reads and partial replication. In ICDCS,
2019.

[52] Kristina Spirovska, Diego Didona, and Willy Zwaenepoel. Wren:
Nonblocking reads in a partitioned transactional causally consistent data
store. In DSN, 2018.

[53] Linpeng Tang, Qi Huang, Amit Puntambekar, Ymir Vigfusson, Wyatt
Lloyd, and Kai Li. Popularity prediction of Facebook videos for higher
quality streaming. In ATC, 2017.

[54] Robert H. Thomas. A majority consensus approach to concurrency
control for multiple copy databases. ACM Trans. Database Sys., 4(2),
1979.

https://aws.amazon.com/about-aws/global-infrastructure/
https://www.cloudping.co/
https://engineering.fb.com/data-center-engineering/data-centers-2018/
https://cloud.google.com/about/locations/
https://www.google.com/about/datacenters/inside/locations/
https://azure.microsoft.com/en-us/global-infrastructure/regions/


[55] Robbert van Renesse and Fred B. Schneider. Chain replication for
supporting high throughput and availability. In OSDI, 2004.

[56] Kaushik Veeraraghavan, Justin Meza, David Chou, Wonho Kim, Sonia
Margulis, Scoot Michelson, Rajesh Nishtala, Daniel Obenshain, Dmitri
Perelman, and Yee Jiun Song. Kraken: Leveraging live traffic tests to
identify and resolve resource utilization bottlenecks in large scale Web
services. In OSDI, 2016.

[57] Brian White, Jay Lepreau, Leigh Stoller, Robert Ricci, Shashi Gu-
ruprasad, Mac Newbold, Mike Hibler, Chad Barb, and Abhijeet Joglekar.
An integrated experimental environment for distributed systems and
networks. In OSDI, 2002.


	Introduction
	Background and Motivation
	Background
	Partial Replication for the Many

	K2 Basic Design
	Server Side Design
	Client Library
	Local Write-Only Transactions

	Replication Design
	Replication Design
	Rationale and Key Insights

	Read-Only Transactions
	Cache Awareness
	Trading Freshness for Performance
	Read-only Transaction Algorithm

	Fault Tolerance
	Handling Failures
	Switching Datacenters

	Evaluation
	Implementation and Baseline
	Experimental Setup
	Read Latency Improvement
	Throughput, Write Latency, Staleness

	Related Work
	Conclusion
	References

