
RESOURCE ELASTICITY IN DISTRIBUTED DEEP LEARNING

Andrew Or 1 Haoyu Zhang 1 2 Michael J. Freedman 1

ABSTRACT
Elasticity—scaling out or in depending upon resource demand or availability—allows a system to improve its
efficiency or performance. This leads to potentially significant cost savings and shorter job completion times.
However, elasticity is not possible in today’s distributed deep learning deployments, in large part because the most
widely used frameworks such as TensorFlow are built assuming that resource allocation must be fixed throughout
the lifetime of the job.

In this work, we demonstrate that these assumptions are not fundamental to distributed deep learning and present
the first autoscaling engine for these workloads. Our system takes into account cost as well as scaling efficiency
when making scaling decisions. As a side benefit, we reuse the same autoscaling mechanisms to remove persistent
stragglers. We evaluate our system by training ResNet on CIFAR-10 and ImageNet, and we find a reduction in job
completion time of up to 45% and a reduction in GPU time of up to 85.1%.

1 INTRODUCTION

Distributed learning today often over- or under-provisions
resources. The state-of-the-art approach of assigning re-
sources to a job is largely manual: an expert estimates what
is an appropriate set of resources for a given job based on
past experiences with similar jobs. For example, for training
ResNet (He et al., 2016) on ImageNet (Deng et al., 2009),
it is common to choose a number of GPUs such that the
batch size per GPU is 64 or 128 images (Jia et al., 2018;
Ying et al., 2018; Sun et al., 2019). For workloads that
are not well known, these guidelines do not exist and users
have to resort to trial-and-error to find an appropriate set of
resources for their jobs.

However, a trial-and-error approach is expensive. Every
iteration destroys all processes along with their in-memory
program state, such as preprocessed input samples and the
computation graph, and this can take minutes to rebuild.
Further, deciding how much resources to assign to a given
job requires knowing the scaling characteristics of the job.
This is difficult to estimate ahead of time without sufficient
experience with the job itself or similar jobs.

For these reasons, users often rely on suboptimal but fixed
sets of resources for their jobs. This means their jobs are
potentially either running more slowly than what the users
can afford (in terms of paying for extra resources), or wast-
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Figure 1. Even a single straggler can persistently hurt throughput
scaling in synchronous SGD training. After the 4th worker, which
is 33% slower than the other workers on average, the difference
between the two curves widens as more workers are added.

ing resources that do not actually contribute to observable
progress. Further, even if the amount of resources assigned
to a job is optimal, the set of resources may not be, for
example, when there are persistent stragglers in the system
(see Figure 1). Existing approaches handle stragglers by
overprovisioning resources, but never actually remove the
stragglers (Abadi et al., 2016; Karakus et al., 2017).

1.1 Resource elasticity

Contrary to existing practice, this paper argues that resource
allocation in distributed learning should be elastic. A job
should request more resources if throughput feedback is
positive, and relinquish resources if training progress would
not be affected by the loss of these resources.
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In cloud environments, the system can incrementally find the
most cost efficient set of resources for a job, while ensuring
that the user is not paying for extra resources that do not
contribute to training progress due to scaling limits. In
multi-tenant environments, the system can share resources
more efficiently with other jobs running in the cluster and
take advantage of diurnal cycles. In both cases, straggler
mitigation comes for free; with the appropriate statistics, we
can simply replace workers that are consistently slow.

The idea of resource elasticity has already been widely ex-
plored in many other areas such as cloud services (AWS),
distributed batch processing (Dean & Ghemawat, 2008; Za-
haria et al., 2012), stream processing (Gedik et al., 2013),
and cluster management (Rensin, 2015). Applying it in the
context of distributed learning can reap similar benefits.

1.2 Main challenges

One of the main reasons why many users still rely on the
manual trial-and-error process today is because the notion
of static resource allocation is baked into state-of-the-art dis-
tributed learning systems. TensorFlow (Abadi et al., 2016),
a widely popular deep learning framework, embeds a job’s
cluster membership information into a computation graph
that cannot be easily modified once training begins. Syn-
chronization between workers relies on mechanisms that
wait for a fixed number of tokens or messages that corre-
sponds to the number of workers in the system.

Other popular frameworks such as PyTorch (Paszke et al.,
2017) and MXNet (Chen et al., 2015) have similar con-
straints. Although PyTorch supports dynamic graphs, they
are only dynamic with respect to inputs and operations, not
with respect to the number of processes in the system. The
lack of native support for dynamic resource allocation in
these frameworks poses a significant barrier for users who
wish to utilize their resources more efficiently.

Realizing resource elasticity for distributed learning is more
than just an engineering effort, however. There are funda-
mental differences between distributed learning and other
areas, such as distributed batch processing, that already
support it.

First, because these existing areas are largely driven by dy-
namic workloads, resource utilization is often used as a
metric for scaling. In contrast, resource demands in dis-
tributed learning are largely static throughout the lifetime
of the job; workers are often highly utilized and never idle.
This means we need to design our own scaling heuristics
instead of just reuse existing ones.

Second, in distributed learning, scaling out generally in-
volves increasing the overall batch size across all the work-
ers in the system, but this affects the convergence of the

model (Keskar et al., 2016). Our goal is to provide flexible
resource allocations without affecting the quality of training.

1.3 Autoscaling engine for distributed learning

To realize these goals, we built an autoscaling engine on
top of TensorFlow, using Horovod (Sergeev & Del Balso,
2018) as the underlying communication mechanism. This
architecture decouples computation from synchronization
across workers in the system. During changes in resource
allocation, our system reuses existing processes and saves
all relevant program state in memory to minimize idle time.
In addition to building such a system, this paper makes the
following contributions:

• Outline the main architectural limitations in state-of-
the-art distributed learning systems that prevent re-
source elasticity.

• Design new scaling heuristics for distributed learning
that take both throughput and cost into account.

• Present the first distributed learning system that han-
dles persistent stragglers without overprovisioning re-
sources.

This work is primarily focused on synchronous stochastic
gradient descent (SGD) training using the allreduce parame-
ter update architecture (Patarasuk & Yuan, 2009). However,
the techniques presented also apply to other forms of dis-
tributed learning. We do not focus on the multi-tenant use
case in depth, as the problems there are already partially
solved by SLAQ (Zhang et al., 2017b), a cluster sched-
uler that gives more resources to jobs that converge faster.
Rather, the goal of this paper is to take the first step in bring-
ing attention to the need for resource elasticity in distributed
learning.

2 BACKGROUND

In this section, we elaborate on the main hurdles for resource
elasticity in distributed deep learning systems today. We
begin by discussing the design limitations in TensorFlow
that makes autoscaling difficult (§2.1), then turn to the scal-
ing complications posed by the batch size and discuss how
these complications affect autoscaling (§2.2).

2.1 Architectural limitations in TensorFlow

The common practice for training deep learning models with
TensorFlow involves replicating the model graph across
workers in the system. Model parameters are mirrored
across the workers and synchronized at the end of each step.
Operations in the model graph that cross device boundaries
are connected via special Send and Receive operations
that TensorFlow adds to the graph.
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Today, there is no easy way to change cluster membership
at runtime. This would require replacing existing Send and
Receive operations with new ones that properly reconnect
the new set of workers. However, this is non-trivial because
once training begins, the framework has already performed a
series of optimizations such as rewriting the graphs, building
the input data pipeline, and potentially JIT compiling for
accelerators (XLA).

Further, synchronization primitives in TensorFlow rest
on the assumption that the number of processes is fixed
throughout the lifetime of the program. For example,
SyncReplicasOptimizer uses fixed-sized queues to
wait on all workers at the end of each step. The newer
MultiWorkerMirroredStrategy API, which is the
recommended method for distribution in TensorFlow 2.0,
makes similar assumptions. Model parameters created un-
der this strategy’s scope are automatically mirrored across
the specific replicas that were configured in the beginning.
Expanding the cluster requires rebuilding the model graph
under a new distribution strategy for the new set of workers.

Similar limitations also exist in other widely used frame-
works. Thus, to build an autoscaling system for distributed
learning workloads, we must either resolve these architec-
tural constraints or find ways to work around them. We will
return to this in more detail in §6.

2.2 How to set the batch size?

Depending on the context, the term batch size can refer to
either the number of samples assigned to each device, or the
total number of samples across all devices. In this paper, we
refer to the former as the local batch size and the latter as
the global batch size, and use the term minibatch to refer to
the global batch size’s worth of data processed in each step.

In homogeneous systems, the global batch size is simply
the local batch size multiplied by the number of devices in
the system. Therefore, finding the right number of devices
for a given job is tantamount to finding the right values for
these batch sizes. Today, this process is often driven by the
constraints on both batch sizes.

Constraints on the local batch size. Performance of accel-
erators such as GPUs and TPUs rely on processing large
batches of data for better parallelism. However, device
memory is limited, and all input data and the intermedi-
ate computation results in a minibatch must fit in memory.
This sets a hard upper limit for the local batch size. For
example, for training ResNet-50 on ImageNet, an NVIDIA
V100 GPU can fit up to 170 samples at float32 precision.
Although there is no lower limit, resource utilization dete-
rioriates significantly as the local batch size decreases.

Constraints on the global batch size. Recent work has
shown that using large global batch sizes can affect the

convergence of the model (Keskar et al., 2016; Smith &
Le, 2017; Hoffer et al., 2017), and the effects of this have
been observed at scale (Goyal et al., 2017; Jia et al., 2018;
Mikami et al., 2018; Sun et al., 2019). For common work-
loads, there are often well known thresholds for the global
batch size before training begins to diverge. For example,
this threshold is 8192 for training ResNet on ImageNet, as-
suming no additional optimization techniques are applied.
However, finding this threshold for arbitrary workloads is
an open problem that we will not address in this paper.

Thus, finding an efficient amount of resources for a given
job involves searching within these constraints. The search
space can be large, however. Even after fixing the global
batch size for a given workload, there are still many config-
urations to explore. For example, how much less efficient is
256x32 (number of GPUs times local batch size) vs 64x128?
Is the tradeoff worth the extra cost? These questions are
difficult to answer without sufficient experience with the
job, and they are common for users deploying their models
even without elasticity.

Implications for scaling. How should the batch sizes
change when new workers are added to the system? There
are two ways of handling this. The first fixes the local batch
size, which preserves the per device efficiency but allows
the global batch size to climb, and this may affect conver-
gence (weak scaling). The second fixes the global batch size,
which decouples convergence from scaling, but sacrifices
per device throughput since the local batch size must fall as
the cluster expands (strong scaling).

Our system takes the middle ground: we accept a maximum
global batch size from the user and fix the local batch size
until this threshold is crossed. If this limit is not provided,
the system will assume that either the model convergence
will not be significantly affected under large global batch
sizes, or the user considers the potential degradation in
model quality acceptable.

3 SYSTEM OVERVIEW

In a typical distributed learning setup, minibatches are set
to be small enough such that the system as a whole can
exploit good parallelism. Thus, the time to process each
minibatch is generally short (subsecond to seconds) and
runtime statistics available at the end of each minibatch can
be accessed frequently.

The autoscaling engine has two major components: scaling
heuristics (§4) and straggler detection (§5) (Figure 2). It
collects these runtime statistics to build a distribution of
throughputs for each individual worker and for each cluster
size. With these distributions, the engine can make fine-
grained scaling decisions at the minibatch granularity. In
practice, it is more reasonable to make a decision every
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Figure 2. Autoscaling engine collects runtime statistics to make
fine-grained autoscaling decisions.

n (e.g., 10) minibatches to ensure that we have sufficient
numbers of data points.

Once a scaling decision has been made, the system needs to
only update the parameter synchronization portion of the ex-
ecution engine. Other in-memory state used for computing
gradients, such as preprocessed samples, model parameters,
and computation graphs, can be reused as is. This allows the
system to minimize idle time when responding to changes
in resource allocations.

4 SCALING HEURISTICS

An autoscaling system relies on scaling heuristics to deter-
mine when to add or remove how many workers. Scaling
heuristics consists of two components: a scaling schedule
that decides when to add or remove how many workers, and
a set of scaling conditions that decides whether it is still
efficient to keep scaling. We first discuss the former while
assuming the existence of the latter.

4.1 Scaling schedule

Our system uses a simple schedule that adds K workers
every N batches until the scaling conditions are violated.
The unit of scaling K depends on the workload and system
constraints; for example, a reasonable value for K is the
number of GPUs on a machine, where each worker is as-
signed a single GPU. The scaling interval N controls how
much information the system is given before making an
autoscaling decision. A large N means decisions are more
reliable because more runtime statistics are collected, but
delays finding a more efficient cluster size. In practice, even
a small value such as N = 10 is often sufficient.

Figure 3 shows how the schedule adds and removes workers
using the scaling conditions. The system always starts with
only one data point on the throughput curve, which is not
enough to make any decisions. Therefore, the first step
is always to add K workers (or remove K workers if the

Figure 3. Scaling schedule for scaling out (left) and scaling in
(right). Autoscaling decisions follow the direction of the arrows.
The check mark or red X between two points represents whether
scaling conditions were met when scaling from the first point to the
second. The red dot represents the final cluster size the schedule
settled on.

cluster size is already at the upper limit). If the scaling
conditions passed, then we continue adding until this is no
longer true (left figure).

If the scaling conditions failed, then it means it is not effi-
cient to expand the cluster. We must keep searching, how-
ever, because the most efficient point may be smaller than
our current size. Thus, when this happens, the system will
jump to next lowest point that it does not have runtime
statistics for, as shown in the right figure of Figure 3. This
process continues until the scaling conditions begin to pass.

4.2 Scaling conditions

Scaling conditions refer to the conditions for which a worker
should be added to the system. In general, the system will
try to keep the number of workers at the point before the
conditions first begin to fail.

4.2.1 Throughput scaling efficiency

The first metric our system considers is incremental through-
put scaling efficiency, defined as follows:

sk,d =
∆R/∆k

rk

k = current number of workers
d = number of workers to add = ∆k

Rk = aggregate throughput with k workers
rk = per worker throughput with k workers = Rk/k

∆R = Rk+d −Rk

Then, the scaling condition is simply whether this term is
above a certain threshold:

sk,d > S, S ∈ [0, 1]

Intuitively, this term measures how much each extra worker
contributes to the overall performance of the system relative
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Figure 4. An example of how total cost and throughput scale with
cluster size. Dotted line represents perfect scaling for throughput.

to how much each existing worker contributes. For example,
in the simple case when d = 1, this expression becomes

sk,1 =
Rk+1 −Rk

rk

Suppose R4 = 400, then R5 = 500 means the new worker
contributes the same amount as each existing worker and
the scaling efficiency is 1 (perfect scaling), and R5 = 450
means the scaling efficiency is only 0.5. A negative sk,d
means the aggregate throughput actually dropped as a result
of adding d workers. This can happen if the increase in
communication costs outweigh the benefits of increased
parallelism, for instance.

Note that unlike normal definitions of scaling efficiency,
sk,d is relative to the previous number of workers instead
of relative to a single worker. This is because we often do
not have the data point for running with a single worker, as
these jobs are distributed.

4.2.2 Utility vs cost

To many users, metrics like dollar cost and job completion
time are more intuitive to reason about than scaling effi-
ciency. If the user can provide an estimate of the utility
gained from a given job in terms of dollar amount, then the
system can use this information to find a cluster size that
maximizes utility while minimizing cost.

Total cost. We define the expected total cost at any given
point of the job as the following:

C = Cp + tk ∗ b ∗ k ∗ P

Cp = past cost, the amount spent on this job so far
k = current number of workers
tk = step time, a function of number of workers
b = number of remaining batches
P = price of an instance per time unit, a constant

(a) (b) (c)

Figure 5. Example utility functions provided by the user. Y-axis is
utility in terms of absolute dollars and x-axis is total training time.
Utility functions are monotonically decreasing. In cases when
jumps are present, such as in step functions, the system modifies
the functions to replace the gaps with linear functions, as shown
by the red dotted line in 5(c).

Figure 4 plots the total cost and throughput for a job training
ResNet on CIFAR-10 on a CPU cluster. The machines used
are most similar to m5.4xlarge instances on EC2, which
have 16 cores and 64GB memory each and cost $0.768
per hour when this paper was written. Thus, we set P =
0.768/3600 since we express step time in terms of seconds.

Finding the number of workers that generates the most value
depends on (1) the total cost C of running the job with that
many workers, as shown above, (2) the total completion time
T of the job, and (3) how much completing a job within T
is worth in dollar amount, denoted as utility U(T ).

Utility function. U(T ) is a monotonically decreasing func-
tion; a rational user should always prefer shorter completion
times. Figure 5 lists common forms of U(T ). A linearly
decreasing function indicates a constant preference for low-
ering T regardless of the value of T . An concave downward
function indicates a higher preference to lowering T when
T is high, but this preference diminishes as T decreases.
A step function can be used to express a target completion
time for the job.

Given a utility function and a complete total cost curve, the
user can directly compare the two to find the optimal number
of workers. More specifically, since total completion time
T = Tp + tk ∗ b, where Tp is the total time spent on the job
so far, T is a function of the number of workers k, and the
user can search across all possible values of k to find the
point that minimizes U(T (k))− C(k).

Unfortunately, the total cost curve is not available in the
beginning of the job. Instead, the autoscaling engine must
discover this curve incrementally. In this case, directly
comparing the values of U(T (k)) and C(k) is potentially
problematic; a simple scaling condition such as U(T (k)) >
C(k) will not work in cases when the utility function is
flat. For example, if the utility in the region T < T1 of
Figure 5(c) is always greater than the total cost, then we will
keep adding workers to the system even though total cost is
increasing but utility is not.
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Scaling condition. Instead, when deciding whether to add
a worker, what the system should compare is the marginal
utility and the marginal cost:

U(T (k + 1))− U(T (k)) > C(k + 1)− C(k)

If this condition is true, then the (k + 1)th worker is worth
more than it costs, and so the overall system is better off
compared to having only k workers. This is the scaling
condition our autoscaling engine uses.

To make this work for step functions, we must additionally
bridge the gaps between the steps, as shown in the red dotted
line in 5(c). We add a line that begins at the rightmost point
of the higher step (T1) and ends at either the rightmost point
of the lower step (in the case of 3 or more steps) or the initial
T (T0). This enables the system to transition between steps.

Since a utility function explicitly specifies the user’s pref-
erences, the utility scaling condition should override the
decision made by the throughput scaling condition. If a
utility function is not provided, however, the system will
fall back to using the throughput scaling condition.

5 STRAGGLER DETECTION

Stragglers are a common source of slowdown in distributed
systems. In synchronous distributed training, even a single
straggler can prevent the entire cluster from advancing to
the next step due to synchronization barriers at the end of
each minibatch. Using per-worker runtime statistics, the
autoscaling engine can easily keep track of which workers
are consistently slower than others on average.

Our system runs a simple straggler detection algorithm at
the end of each step (Algorithm 1). A worker is considered
a potential straggler if its throughput as a fraction of the
median throughput falls below a threshold. Intuitively, this
threshold represents the minimum throughput (relative to
the median) that the system will tolerate. A threshold of
1 means all workers below the median will be treated as
stragglers, while a threshold of 0 means no workers will be
treated as stragglers. One reasonable threshold is 0.8, which
means the system will tolerate at most a 1.25x increase in
total training time caused by stragglers.

Removing a worker as soon as its throughput fraction falls
below this threshold is too aggressive. Our goal is to detect
persistent stragglers, not workers that happen to run slowly
for one or two batches. One solution is to remove the worker
only if it has been consistently slow for N batches in a row.
However, this does not detect the case when a persistent
straggler happens to run normally once in a while, e.g. on
every N − 1’th batch.

1 alpha = 0.1
2 fraction_threshold = 0.8
3 fraction_averages = {}
4

5 # Called at the end of every step
6 def record_stats(per_worker_throughputs):
7 m = median(per_worker_throughputs)
8 for t in per_worker_throughputs:
9 fraction = t / m

10 fraction_averages[worker] =
11 alpha * fraction + (1 - alpha) *

fraction_averages[worker]
12

13 # Called every N steps for each worker
14 def is_straggler(worker):
15 return fraction_averages[worker] <

fraction_threshold

Algorithm 1. Straggler detection.

To address this problem, our system maintains an exponen-
tial weighted moving average (EWMA) of the throughput
fraction for each worker. A worker will be treated as a per-
sistent straggler only if its average throughput fraction falls
below the threshold. Small interruptions will only adjust the
average instead of marking the worker as not a straggler.

Now we have a mechanism to detect persistent stragglers.
To ensure the number of workers stays the same, we add a re-
placement worker to the system when removing a straggler.
As an optimization, our system delays the actual removal of
the straggler to when the replacement joins. This ensures
that the system’s performance at any given time is no worse
than if the straggler is not removed.

6 IMPLEMENTATION

As described in section 2, the architectural choices made in
TensorFlow pose significant challenges to realizing resource
elasticity out of the box. This section describes how we
worked around these challenges when building an autoscal-
ing engine on top of this framework.

Checkpoint restart. Before implementing our system, we
considered a coarse-grained alternative of achieving re-
source elasticity that is available out-of-the-box. This ap-
proach saves the model to checkpoints, kills all existing
processes, spawns new ones on the new set of resources,
and restores from the saved checkpoints. However, this ap-
proach is too costly (§7.2) so we quickly dismissed it as a
viable mechanism for our autoscaling engine.

Bypassing TensorFlow distribution logic. Our system
treats TensorFlow processes as individual programs, linking
them only through gradient synchronization using Horovod,
a third-party allreduce library. Each worker is unaware of
the existence of the other workers, finishing each step by ap-
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plying a black-box (allreduce) function to its own gradients
before applying them to its own model.

This architecture decouples the computation graph from the
number of workers in the system. When a new worker joins,
each existing worker only needs to detach the old allreduce
operation from its graph and reattach the new one. Note that
this is significantly easier to do than replacing the internal
Send and Receive operations because the allreduce oper-
ation, as an external function applied to a worker’s gradients,
is a much narrower interface. The remainder of the graph
does not need to change, and so we do not need to rebuild
the model graph.

Minimizing transition time. Every second of time spent
on transitioning to a new resource allocation is wasted time
that could have been used for training the model. Thus, we
wish to minimize the transition time.

When a worker process first starts, it must perform a few
time consuming tasks before training the first batch, such as
loading libraries, building the model graph, preprocessing
the first batch of data, and warming up the GPUs assigned
to the process, if any. Depending on the workload, these
tasks can take minutes altogether. In an autoscaling system,
it is unacceptable to have all resources go idle for minutes
every time the system adjusts a job’s resource allocation.

To minimize the transition time, our system delays when a
new worker joins to until after it has performed all of the
above by running a few batches on its own. This brings the
transition time down to a few seconds for most workloads.

Bootstrapping new workers. When a new worker joins the
system, it must update its model parameters to the existing
values before it can begin training, otherwise the gradients it
computes will not make sense to the other workers. Our sys-
tem bootstraps new workers by having them synchronously
fetch different slices of the model parameters from different
existing workers in parallel. As we will see in the next sec-
tion, this adds a few more seconds to the transition time for
training ResNet-50 on ImageNet.

7 EVALUATION

We ran our experiments in two environments. The first is a
cluster of 60 machines, each with 16 Intel Xeon CPUs oper-
ating at 2.6GHz, 64GB of memory, and a 1 Gbps network
connection. The second is a cluster of 8 machines, each
with 8 NVIDIA V100 GPUs, 64 Intel Xeon CPUs operating
at 2.2Ghz, 250GB of memory, and a 16 Gbps network con-
nection. End-to-end evaluation is run on the GPU cluster
while other benchmarks are run on the CPU cluster.

7.1 End-to-end

Figures 6 and 7 compare training with and without using
the autoscaling engine we built. To evaluate how our system
reacts to different workloads, we train on two datasets of
vastly different sizes, CIFAR-10 and ImageNet.

In this experiment, static refers to using a con-
stant number of GPUs throughout the entire job, while
autoscaling refers to starting with a certain number
of GPUs but potentially settling on a different number that
is more resource efficient. We use the throughput scaling
condition with a scaling efficiency threshold of 0.1 and
configure our system to scale on 4 GPU increments.

7.1.1 CIFAR-10

We train ResNet-56 on CIFAR-10 for 200 epochs using a
fixed global batch size of 1024. The number of GPUs used
in each trial varies from 4 to 24, and each worker is assigned
one GPU.

This workload is most efficiently run on 4 or fewer GPUs.
As shown in the static line in Figure 6(a), completion
time actually increases as more GPUs are added. This is due
in large part to the large drop in performance that results
from having to use smaller local batch sizes.

Our autoscaling engine recognizes this and converges to 4
GPUs in all trials. By doing so, we reduce the total com-
pletion time by 8.23% on average and up to 16.0%. The
real gain, however, comes from the potential cost savings of
from discarding GPUs that do not contribute to additional
performance. In particular, our system reduces the total
GPU time, which scales with cost, by 58.6% on average and
up to 85.1% (Figure 6(b)).

An autoscaling system must respond to misallocation of
resources quickly in order to reduce cost. Figure 6(c) shows
that all trials converge to 4 workers within 61.0 seconds of
training and up to 78.4 seconds. This duration is dominated
by the time it takes for new workers to bootstrap, which is
unavoidable. Note that in the mean time existing workers
continue to train and keep the resources busy.

7.1.2 ImageNet

We train ResNet-50 on ImageNet using a maximum global
batch size of 4096. Due to the size of the dataset, we only
train this model for 5 epochs, which is by far long enough
for the number of workers to converge in autoscaling
mode. Unlike in the CIFAR-10 experiment, we fix the local
batch size while letting global batch size rise within a limit
of 4096. This allows the system to scale more efficiently,
since the per GPU efficiency is not affected.

Figure 7(a) shows that within the range of 32 and 64 GPUs,
completion time is minimized with 64 GPUs. This is also
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Figure 6. Training ResNet-56 on CIFAR-10. In figure 6(c), each line refers to a different starting number of workers.
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Figure 7. Training ResNet-50 on ImageNet. In figure 7(c) each line refers to a different starting number of workers.

the number of GPUs our autoscaling engine converges to.
Our system reduces the total completion time by 19.4% on
average and up to 45.0%. For longer jobs such as running
the same experiment for 100 epochs, we expect to see a
much more dramatic improvement, since the time spent on
running on sets of resources that are less efficient (e.g. with
32 workers) will be smaller as a percentage.

However, unlike in the CIFAR-10 experiment, the average
GPU time increases by 7.39% on average and up to 14.7%
(at 48 workers). This happens when the increase in perfor-
mance is not enough to offset the cost of the extra workers.
From Figure 7(b), we can see that the GPU time is higher
even relative to running 64 workers in static mode. The
average increase of 5.66% is caused by a combination of
running at a suboptimal number of workers for a period of
time, and the overhead from the idle time during changes in
resource allocation.

Scaling from the initial set of GPUs to 64 GPUs took 264
seconds on average and up to 583 seconds (Figure 7(c)).
The time to converging to the target number of workers
is much longer than in the CIFAR-10 experiment. This
is primarily because many trials in this experiment scale
out multiple times, and each time the system needs to wait
for the new workers to load the libraries, build the graph,
fetch existing model parameters etc. Note that scaling only
needs to happen in the beginning so the overheads are less
observable for long jobs. For example, if we train 100

CIFAR-10 ImageNet

autoscaling (+) 3.179 6.813
autoscaling (-) 2.612 4.376

checkpoint restart 72.756∗ 81.186∗

Table 1. Average idle time during transition in seconds. For au-
toscaling, (+) refers to adding a worker while (-) refers to removing
one. For checkpoint restart, the transition time is the same in both
cases. (∗) does not include CUDA library loading time, which can
add another minute.

epochs starting with 32 workers, the time to reach 64 GPUs
(583 seconds) will only be 1.16% of the total training time
(≈ 100/5 * 2502 seconds).

7.2 Transition time

As described in section 6, transition time refers to how long
resources in the cluster go idle for while the job transitions
to a new resource allocation. Minimizing this duration is
crucial for ensuring high resource utilization.

Table 1 compares the transition time using the checkpoint
restart strawman with those using our autoscaling engine.
For training ResNet on both CIFAR-10 and ImageNet, tran-
sition time in our system is no more than a few seconds.
Adding workers takes longer because the new worker must
fetch model parameters from existing workers. For Ima-
geNet, this adds a few extra seconds to the transition time.
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Figure 8. Higher utility lowers completion times for a wider range
of worker prices. Each point represents a trial with a different price
per worker per time unit. The left column plots the linear function
while the right column plots the step function. Lower plots use
higher utility.

Compared to checkpoint restart, however, our system has
significantly shorter transition times, up to 95.6% reduction
for CIFAR-10 and 91.6% reduction for ImageNet.

7.3 Utility functions

In this section, we evaluate two utility functions used by
our autoscaling engine. As described in 4.2.2, the linear
function represents a constant utility gain for lowering the
total completion time regardless of what the completion
time is, while the step function can be used to express a
target completion time. This experiment trains ResNet-56
on CIFAR-10 for 50 epochs, using a global batch size of
1024 in all trials.

Figure 8 plots these utility functions with the total comple-
tion times of running with different prices per worker per
time unit. In both the linear and step functions, lower utility
values cause a wider spread of completion times across dif-
ferent price points. In particular, an overly expensive price
of $10/hour for each worker causes our system to converge
to a lower number of workers since the utility gain is not
worth it. This inflates completion time by 2.5x for the linear
function and 2x for the step function, compared to running
with $0.01/hour.

In both functions, when the value of the utility provided
by the user is high, the difference in price matters less. In
the linear function, when the maximum utility is $10000,
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Figure 9. Every 4th worker is a straggler, up to 10 stragglers. Strag-
glers are removed shortly after they are introduced.

all price points complete within 50 minutes, the fastest for
this experiment. If the user provides a step utility function
with a different target (60 minutes in figure 8), however,
our system converges to that target instead of the minimum.
Intuitively, this is because further reducing the completion
time is not worth the extra cost of the additional workers,
since utility is flat below the target completion time. In
general, once the system has reached the highest tier of the
function, it will not make any further attempts to scale out.

7.4 Straggler removal

As a byproduct of autoscaling, straggler removal ensures
that a job is not only using the right amount of resources,
but also using the resources allocated to it efficiently. In
this experiment, we train ResNet-56 on CIFAR-10 for 100
epochs using a global batch size of 1024. We ignore the scal-
ing condition and spawn 1 worker every time after running
10 batches on a new cluster size. Additionally, we intro-
duce 1 straggler into the system for every 3 normal workers
added, up to 10 stragglers. Slowdown refers to computation
slowdown; a 2x straggler is simulated by assigning twice as
many samples to that worker per step.

Figure 9 shows that our system responds stragglers quickly.
Every time a straggler is introduced there will be a down-
ward spike in throughput. However, these spikes are short;
a straggler is already marked for removal by the time the
new worker in the next round joins. In this experiment, the
average lifetime of a straggler is about 1-2 minutes, since
that is the amount of time it takes for a new worker to join
after being spawned.

Figure 10 shows that the replacing the stragglers in this man-
ner has a large effect on the completion time of the job. In
particular, our straggler removal strategy reduces the com-
pletion time by 51.4%, 34.1%, and 19.9% for a 4x, 2x, and
1.33x slowdown respectively. Compared to running without
stragglers, our strategy has similar completion times; all
trials were within 12.5% of the baseline.
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8 RELATED WORK

Elasticity in machine learning. The idea of elasticity has
been explored in the context of distributed machine learning.
(Huang et al., 2015) considers elasticity in the context of
declarative machine learning on MapReduce. However,
many of the techniques presented are designed specifically
for the master-worker architecture in MapReduce—which
itself already provides the mechanisms for elasticity—and
so do not apply to modern deep learning workloads.

(Qiao et al., 2018) explores elasticity in the context of CPU-
based machine learning using the parameter server architec-
ture. Their discussion of multi-tenant priority as a potential
scaling heuristic is complementary to our work. However,
the low level event-driven API they propose is incompatible
with state-of-the-art deep learning frameworks.

(Harlap et al., 2017) exploits dynamic pricing on public
clouds in order to lower costs for machine learning work-
loads through elasticity. Although they specifically target
the parameter server architecture and does not consider
deep learning workloads, many of their ideas can be applied
alongside those presented in this work.

Autoscaling systems. Resource elasticity and autoscaling
are ubiquitous outside machine learning. Production sys-
tems in many areas such as cloud computing (AWS; Azure;
GCE), batch data processing (Dean & Ghemawat, 2008;
Zaharia et al., 2012) and cluster management (Vavilapalli
et al., 2013; Hindman et al., 2011; Rensin, 2015), already
deploy autoscaling to cut cost and increase efficiency. Here
we will discuss two examples to highlight the differences
between these workloads and those in distributed learning.

Dynamic resource allocation in Apache Spark (Or, 2014)
scales out exponentially while there are tasks pending to
be executed, and scales in when an executor (worker) is
idle. Autoscaling in Kubernetes (Szczepkowski & Wiel-
gus, 2016) scales in and out to maintain an average CPU
utilization of 50% across all pods. In distributed learning,
there are always pending tasks, workers are never idle, and
resource utilization is stable across minibatches. Therefore,
these scaling heuristics do not apply and our system must
devise ones that are more specific to our workloads. Scaling

schedules such as the exponential increase in Apache Spark
may help reduce scaling overheads. We leave exploring
alternative schedules as future work.

Straggler mitigation. Distributed synchronous SGD is vul-
nerable to stragglers. As a system scales, their effects will be
more and more pronounced. State-of-the-art techniques of
handling them include using backup workers (Abadi et al.,
2016; Chen et al., 2016), redundant data encoding (Karakus
et al., 2017), bounded staleness (Ho et al., 2013), and work
reassignment (Harlap et al., 2016).

However, these are all variants of overprovisioning. For
example, assigning backup workers means a small fraction
of the computed results will be wasted. Further, in the event
of persistent stragglers, these techniques do not address
the root cause by removing these stragglers. We argue
this is largely because of the widespread assumptions that
resources must be fixed in distributed learning workloads.
Our system can be used alongside with these techniques to
handle persistent stragglers.

Utility functions. Utility functions are widely used in eco-
nomics (Ratchford, 1982) and artificial intelligence (Russell
& Norvig, 2016) to specify preferences for certain actions.
In computing systems, they have been used for VM re-
source management (Minarolli & Freisleben, 2011), live
video analytics (Zhang et al., 2017a), and stream manage-
ment (Carney et al., 2003).

9 CONCLUSION

In this paper, we presented the first autoscaling system for
distributed deep learning. As new types of models and
workloads arise, such a system will help bridge the gap
between unfamiliarity with a given job to quickly being
able to run it with high resource efficiency. Although we
have addressed the main challenges that prevent resource
elasticity today, there are still many remaining questions
that need to be answered by the broader community.

Resource elasticity is the first step of a broader effort to tune
systems parameters using live performance feedback from
training. In the future, it is worth exploring whether other
systems parameters, such as synchronization mechanism,
device placement, and types of parallelism, can be autotuned
dynamically to improve the performance of the system.
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