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Abstract

Training machine learning (ML) models with large

datasets can incur significant resource contention on

shared clusters. This training typically involves many

iterations that continually improve the quality of the

model. Yet in exploratory settings, better models can be

obtained faster by directing resources to jobs with the

most potential for improvement. We describe SLAQ, a

cluster scheduling system for approximate ML training

jobs that aims to maximize the overall job quality.

When allocating cluster resources, SLAQ explores the

quality-runtime trade-offs across multiple jobs to max-

imize system-wide quality improvement. To do so,

SLAQ leverages the iterative nature of ML training algo-

rithms, by collecting quality and resource usage informa-

tion from concurrent jobs, and then generating highly-

tailored quality-improvement predictions for future iter-

ations. Experiments show that SLAQ achieves an average

quality improvement of up to 73% and an average delay

reduction of up to 44% on a large set of ML training jobs,

compared to resource fairness schedulers.
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1 Introduction

Machine learning (ML) is an increasingly important tool

for large-scale data analytics, including online search,

marketing, healthcare, and information security. A key

challenge in analyzing massive amounts of data with ML

arises from the fact that model complexity and data vol-

ume is growing much faster than hardware speed im-

provements. Thus, time-sensitive machine learning on

large datasets necessitates the use and efficient manage-

ment of cluster resources. Three key features of ML are

particularly relevant to resource management.

ML algorithms are intrinsically approximate. ML

algorithms generally consist of two stages: training and

inference. The training stage builds a model from a train-

ing dataset (e.g., images with labeled objects), and the in-

ference stage uses the model to make predictions on new

inputs (e.g., recognizing objects in a photo). ML models

are intrinsically approximate functions for input-output

mapping. We use quality to measure how well the model

maps input to the correct output.

ML training is typically iterative with diminishing re-
turns. While the inference stage is often lightweight

and can run in real-time, the training stage is computa-

tionally expensive and usually requires multiple passes

over large datasets. It generates a low-quality model at

the beginning and improves the model’s quality through

a sequence of training iterations until it converges. In

general, the quality improvement diminishes as more it-

erations are completed.

Training ML is an exploratory process. ML prac-

titioners retrain their models repeatedly to explore fea-

ture validity [1], tune hyperparameters [2, 3], and adjust

model structures [4] before they operationalize their fi-

nal model, which is deployed for performing inference

on individual inputs. The goal of retraining is to get

the final model with the best quality. Since ML train-

ing jobs are expensive, practitioners in experimental en-

vironments often prefer to work with more approximate

models trained within a short period of time for prelimi-

nary validation and testing, rather than wait a significant

amount of time for a better trained model with poorly

tuned configurations. In fact, algorithm tuning is an em-

pirical process of trial and error that can take significant
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effort, both human and machine. With the exponential

growth of data volume, the cost of decision making on

model configurations will likely continue to increase.

Many ML frameworks have been developed [5, 6, 7, 8]

to run large-scale training jobs in clusters with shared re-

sources. Existing schedulers primarily focus on resource
fairness [9, 10, 11, 12, 13, 14], but are agnostic to model

quality and job runtime. During a burst of job submis-

sions, equal resources will be allocated to jobs that are

in their early stages and could benefit significantly from

extra resources as those that have nearly converged and

cannot improve much further. This is not efficient.

We present SLAQ, a cluster scheduling system for ML

training jobs that aims to maximize the overall job qual-

ity. SLAQ dynamically allocates resources based on job

resource demands, intermediate model quality, and the

system’s workload. The intuition behind SLAQ is that in

the context of approximate ML training, more resources

should be allocated to jobs that have the most potential

for quality improvement.

SLAQ leverages the fact that most ML training algo-

rithms are implemented as an iterative optimization pro-

cess. By continually monitoring the history of qual-

ity improvement and runtime, SLAQ generates highly-

tailored and accurate quality predictions for future train-

ing iterations. SLAQ estimates the impact of resource

allocation on model quality, and explores the quality-

runtime trade-offs across multiple jobs. Based on this in-

formation, SLAQ adjusts their resource allocations of all

running jobs to best utilize the limited cluster resources.

The SLAQ scheduler is designed to be dynamic and fine-

grained, so that resource allocations can adapt quickly to

jobs’ quality and the system’s workload changes.

Challenges and solutions. In designing SLAQ, we had

to overcome several technical challenges.

First, ML training algorithms measure the quality of

models with tens of different metrics, which makes it dif-

ficult to compare the training progress of different jobs.

SLAQ normalizes these metrics using the reduction of

loss values. These intermediate quality measures are re-

ported directly by the application APIs. Our normaliza-

tion effectively unifies the quality measures for a broad

set of ML algorithms.

Second, SLAQ should be able to precisely predict the

impact that an extra unit of resources would have on

the quality and runtime of ML training jobs. Previous

work [15] predicts a job’s runtime based on its computa-

tion and communication structure, but it requires that the

job be analyzed or profiled offline. Unfortunately, the

significant overhead of this offline analysis is prohibitive

for our exploratory setting. SLAQ uses online prediction:

it predicts the time and quality of the coming iterations

based on statistics collected from previous iterations.

SLAQ supports configurable high-level goals when

scheduling jobs. When maximizing the aggregate quality

improvement, it can best utilize the cluster resources and

achieve a higher total quality gain across all jobs. When

maximizing the minimum quality, SLAQ can achieve the

equivalent of max-min fairness applied to quality (rather

than resource allocation).

While we designed our scheduler for ML training ap-

plications, SLAQ can schedule many applications with

approximate intermediate results. Some approximate

jobs produce partial results at intermediate points of

the application’s run [16], while others generate ap-

proximate results from samples to avoid scanning en-

tire datasets [17]. Improvement in the quality of these

systems’ results also diminishes with more processing

time [18]. To that end, SLAQ’s techniques are broadly

applicable to other data analytics systems that employ it-

erative approximation approaches.

On the other hand, while SLAQ works with a large

class of important ML algorithms, some non-convex ML

algorithms are not currently supported. The convergence

properties and optimization of these algorithms are be-

ing actively studied, and we leave scheduling support for

these algorithms to future work.

We implemented SLAQ as a new scheduler within the

Apache Spark framework [19]. SLAQ can use its quality-

driven scheduling for many of the ML algorithms avail-

able in MLlib [5], Spark’s machine learning package. In

fact, SLAQ supports unmodified ML applications using

existing MLlib optimizers, as well as applications using

new optimization algorithms with only minor modifica-

tions. We evaluate various distinct ML training algo-

rithms on datasets collected from various online sources.

We found that SLAQ improves the average quality by up

to 73% and reduces the average delay by up to 44% com-

pared to fair resource scheduling.

2 Background and Motivation

The past several years has seen a rapid increase in both

the volume of data used to train ML models and the

size and complexity of these models. Growth in the per-

formance of the underlying hardware, however, has not

caught up, thus placing higher demands on the computa-

tional resources used for this purpose.

An important way that data scientists cope with these

demands is to leverage more approximate models for

preliminary testing, in order to exclude bad trials and it-

erate to the right configuration. A significant amount of

time and resource usage can potentially be saved because

of the iterative nature of ML optimization algorithms,

and the diminishing returns of quality improvements dur-

ing the training iterations. Today’s schedulers, however,

do not provide a ready means to follow this strategy; a

traditional max-min fair scheduler (similarly, the domi-
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nant resource fair scheduler [11]) ensures fair resource
allocation without considering the potential of these re-

sources to improve model quality.

This section motivates and provides background for

SLAQ. §2.1 describes the iterative nature of the ML train-

ing process and how it is characterized by diminished

returns. We introduce the exploratory training process

in §2.2 and describe current practices in §2.3. We dis-

cuss the problems with existing cluster schedulers and

propose our quality-aware scheduler in §2.4.

2.1 ML Training: Iterative Optimization Process

The algorithms used for the ML training process typ-

ically include a dataset specification, a loss function, an

optimization procedure, and a model [20]. A machine

learning model is a parametric transformation fθ : X �−→Y
that maps input variables to output variables, and it typi-

cally contains a set of parameters θ which will be regu-

larly adjusted during the training process. The loss func-

tion represents how well the model maps training exam-

ples to correct output, and is often combined with a reg-

ularization term to incorporate generalizability. Training

machine learning models can be summarized as optimiz-

ing the model parameters to minimize the loss function

when applying the model on a dataset.

When the machine learning model is nonlinear, most

loss functions can no longer be optimized in closed form.

Algorithms such as Gradient Descent, L-BFGS and Ex-

pectation Maximization (EM) are widely used in practice

to iteratively solve the numerical optimization of the loss

function. As the sizes of the dataset and model grow,

the batch algorithms can no longer solve the optimiza-

tion problem efficiently. Instead, various new algorithms

have been proposed to improve the efficiency of the op-

timization process in an iterative and distributed fashion.

For example, stochastic gradient descent (SGD) [21] re-

duces computationally complexity by evaluating the loss

function and gradient on a randomly drawn subset of the

overall dataset in each iteration.

The training process with the iterative optimization

algorithms can be viewed as a refinement loop of the

model. After initializing the parameter values (e.g., with

random values), the optimization algorithms calculate

changes on parameters in order to reduce the loss func-

tion, and update the model with new parameter values.

This process continues until the decrease in the loss func-

tion falls below a certain threshold, or until a preset num-

ber of iterations have elapsed.

Another approach that some ML algorithms take is

ensemble learning. Instead of training a complicated

model with a large number of parameters, these algo-

rithms focus on aggregating results from multiple diverse

but small submodels. For example, boosting algorithms
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Figure 1: Cumulative time to achieve different per-
centages of loss reduction with four jobs: Logistic Re-
gression (LogReg), Support Vector Machine (SVM),
Latent Dirichlet Allocation (LDA) and Multi-Layer
Perceptron Classifier (MLPC). Job convergence is de-
fined to be 1/10000 of initial loss reduction.

improve the accuracy of the model classifier by exam-

ining the errors in results, adding new submodels to the

ensemble, and adjusting the weights of the set of sub-

models. Boost aggregating (bagging) algorithms train

multiple submodels on different subsets of the training

data by sampling with replacement. The training process

of the ensemble models involves both iteratively refining

each submodel, and iteratively adding new submodels or

adjusting the weights of existing components.

When training a machine learning model, the first sev-

eral iterations generally boost the quality very quickly.

This is because the initial parameters of a model are gen-

erally set randomly. However, for most ML training al-

gorithms, the quality improvements are subject to dimin-

ishing returns; iterations in later stages continue to cost

the same amount of computational resources while mak-

ing only marginal improvements on model quality as the

results finally converge. For example, error in gradient

descent algorithms on convex optimization problems of-

ten converges approximately as a geometric series [22].

Theoretically, at the kth iteration, the loss function reduc-

tion is O(μk), where μ is the convergence rate (|μ|< 1).

In general, loss reduction (quality improvement) dimin-

ishes as more iterations are completed.

Figure 1 plots the relative cumulative time to achieve

different percentages of loss reduction. For example, it

takes 20% time for the SVM job to reduce loss by 95%,

and 80% time to further reduce it until convergence. Jobs

for ML algorithm debugging and model tuning only re-

quire the training process to be almost completed to tell

potentially good configurations from bad trials, and thus

could save a lot of time and resources.

The law of diminishing returns applies in many other

data analytics systems in addition to machine learning.

Sampling-based approximate query processing systems

compute approximate results by processing only a sam-

ple of the entire dataset in order to reduce resource us-

age and processing delay [17, 23, 24, 25]. Databases can

also take advantage of online aggregation to incremen-
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Figure 2: Retrain machine learning models.

tally refine the approximated results of SQL aggregate

queries [16, 26, 27]. Using the error or uncertainty as a

measurement of quality in these queries, we can observe

that in most cases the convergence rate of these metrics

are also monotonically decreasing.

2.2 Retraining Machine Learning Models

Training machine learning models is not a one-time

effort. ML practitioners often train a model on the

same dataset multiple times for exploratory purposes.

This process provides early feedback to practitioners and

helps direct their search for high quality models.

Feature engineering. Many ML algorithms require a

featurized representation of the input data for efficient

training and inference. For example, a speech recogni-

tion algorithm utilizes the discretized frequency features

extracted from continuous sound signals with Fourier

transforms and knowledge about the human ear [28].

Identifying exactly the useful features that yield the best

quality relies on both domain knowledge and many train-

ing experiments.

Hyperparameter tuning. Many ML models expose

hyperparameters that describe the high-level complexity

or capacity of the models. Optimal values of these hy-

perparameters typically cannot be learned from the train-

ing data. Examples of hyperparameters include the num-

ber of hidden layers in a neural network, the number of

clusters in a clustering algorithm, and the learning rate

of mode parameters. It is desirable to explore different

combinations of hyperparameter values, train multiple

models, and use the one that gives the best result.

Model structure optimization. To ship ML models

and run inference tasks on mobile and IoT devices, large

models need to be compressed to reduce the energy con-

sumption and accelerate the computation. Various model

compression techniques have been developed [29, 4].

These methods usually prune the unnecessary parame-

ters of the model, retrain the model with the modified

structure, and then prune again. This requires training

the same job multiple times to get the best compression

without compromising the quality of the model.

In addition, the interactions between features, hyper-

parameters and model structures make it even harder

to search for the best model configuration. For exam-

ple, features are often correlated with one another, and

modifying the set of features also requires recalibrating

the hyperparameters (such as learning rate). Expensive

model configuration decisions demand highly efficient

resource management in shared clusters.

2.3 Current Practices in ML Training

When exploring the ML model configuration space,

users often submit training jobs with either a time cutoff

or a loss value cutoff. Both monitoring heuristics are

widely used in practice but have significant drawbacks.

Training ML models within a fixed time frame often

results in unpredictable quality. This is because it is often

difficult to predict a priori what the loss values will be

at the deadline. More importantly, when a training job

shares cluster resources with other jobs, the number of

iterations completed by the deadline also depends on the

cluster’s workload and the scheduler’s decisions.

A fixed loss (or fixed Δloss) cutoff is also difficult to

reason about. Loss values in different algorithms are dif-

ferent in magnitude and have completely different mean-

ings (further explained in §4.1). Additionally, with more

complicated model structures and training algorithms,

it is not rare to see the convergence rate of loss func-

tion fluctuate due to stochastic methods and model stal-

eness [30]. Fixed loss values also make users lose the

potential to gain further improvement on the training.

Some users choose to manually monitor the loss func-

tion values during the training process and stop the job

when they think the models are good enough. However,

large-scale ML jobs could take hours or even days to

complete, which makes the monitoring impractical.

In the context of exploratory ML training, it is desir-

able to explore the quality-runtime trade-off across mul-

tiple concurrent jobs. SLAQ automates this process and

obviates the need for the user to reason about arbitrary

trade-offs. SLAQ flexibly fulfills a broad range of re-

quirements for quality and delay of ML trainings, from

approximate but timely models, to more traditional accu-

rate model training. It allows users to stop jobs early be-

fore perfect convergence, and obtain a model with a loss

function converged enough with much shorter latency.

2.4 Cluster Scheduling Systems

A cluster scheduler is responsible for managing re-

source allocation across multiple jobs. Modern data ana-

lytics frameworks (such as Hadoop [31], Spark [19], etc.)

typically have two layers of scheduling: the job-level

scheduler allocates resources to concurrent jobs running

on the workers, while the task-level scheduler focuses on

assigning tasks within a job to the available workers.

Existing job-level schedulers (Yarn [9], Mesos [10],

Apollo [32], Hadoop Capacity [13], Quincy [14], etc.)

mostly allocate resources based on resource fairness or
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Figure 3: Accuracy (top) and loss function val-
ues (bottom) of a job with resources allocated by a
quality-aware scheduler and a fair scheduler. Accu-
racy (percentage of correctly predicted data points) is
evaluated on a testing dataset at the end of each train-
ing iteration. The more resources allocated to a job,
the faster an iteration can be finished.

priorities. For ML training jobs, however, these sched-

ulers often make suboptimal scheduling decisions be-

cause they are agnostic to the progress (quality improve-

ment) within each job. We argue that the scheduler

should collect quality and delay information from each

job and dynamically adjust the resource allocation to op-

timize for cluster-wide quality improvement.

SLAQ is a fine-grained job-level scheduler: it focuses

on the allocation of cluster resources between compet-

ing ML jobs, but does so over short time intervals (i.e.,

hundreds of milliseconds to a few seconds). Scheduling

on short intervals ensures the continued rebalancing of

resources across jobs, whose iteration time varies from

tens to hundreds of milliseconds.

In a shared cluster with multiple users constantly sub-

mitting their training jobs, Figure 3 shows how the accu-

racy and loss values of one job change over time. With

the fair scheduler, the job receives its fair share of clus-

ter resources throughout its lifetime. A key observation

here is that if we had given this job more resources in its

early stages, its accuracy (loss) could have increased (de-

creased) much faster. SLAQ does exactly this, allocating

more resources to the job when its potential improvement

is large. In particular, the job was able to achieve 90%

accuracy within a much shorter time frame (70s) with

SLAQ than with the fair scheduler (230s). Especially for

exploratory training jobs, this level of accuracy is fre-

quently sufficient.

3 System Overview

SLAQ is a cluster management framework that hosts

multi-tenant approximate ML training jobs running on

shared resources. A centralized SLAQ scheduler coor-

dinates the resource allocation of multiple ML training

(a) Distributed ML Training

(b) Scheduler Architecture

Figure 4: Running ML training jobs with SLAQ.

jobs. As shown in Figure 4(a), each job is composed of

a set of tasks. Each task processes data based on the ML

algorithm on a small partition of the dataset, and can be

scheduled to run on any node. The driver program con-

tains the iterative training logic, generates tasks for each

iteration, and tracks the overall progress of the job. In the

case of training ML models, a task generates an update to

the model parameters based on a partition of the training

dataset. The duration of a task typically ranges from tens

of milliseconds to a few seconds. When the tasks finish

processing the data, the updates from all tasks are aggre-

gated and sent back to the job driver program to update

the primary copy of the model.

Similar to many cluster management systems, SLAQ
divides machines into smaller workers, which is the min-

imum unit of resource to run a task. Figure 4(b) shows

that each job driver, at a certain time, can send tasks to

the workers allocated to that job in the cluster.

The SLAQ scheduler directly communicates with the

drivers of currently running jobs to track their progress

and update their resource allocation periodically. At the

beginning of each scheduling epoch, SLAQ allocates re-

sources between all the jobs based on system workload,

the demands, and progress of the jobs. The scheduler

reclaims workers back from some job drivers, and real-

locates them to other jobs for better system-wide perfor-

mance goals. Note that this is very different from many

of the existing cluster managers [9, 13] which only stati-

cally allocate resources to jobs before they get started.

We made this decision because of two reasons. First,

unlike general batch processing, jobs that train ML mod-

els are typically iterative and usually need longer time to

complete. Scheduling only at the start of the job is too

coarse-grained and can easily lead to starvation or under-

utilization of system resources. Second, the quality im-

provement of the training jobs often changes rapidly (as

described in §2.1). Fixed allocation makes the scheduler
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unable to adapt to jobs’ changes in quality improvement

and resource demands.

4 Design

This section describes the mechanisms by which SLAQ
addresses its key challenges. First, how to normalize

quality measures between distinct jobs in order to deter-

mine how quickly they are increasing (or not) in quality

relative to one another (§4.1). Second, how SLAQ uses

jobs’ resource usage and quality information to precisely

predict the impact of resource allocation in an online

fashion (§4.2). Third, how SLAQ allocates resources to

maximize system-wide quality improvement (§4.3).

4.1 Normalizing Quality Metrics

As explained in §2.1, ML training algorithms are de-

signed to be an optimization process which iteratively

minimizes a loss function, and thus improves the model’s

quality. ML algorithms use various different measure-

ment metrics to indicate the quality of model train-

ing. Though comparing a single job’s quality improve-

ment across iterations is simple, comparing these metrics

across different jobs presents a challenge. To schedule

for better overall quality, we need to compare the quality

metrics across different jobs. This enables SLAQ to trade

off resources and quality between jobs.

One straightforward solution is to use a universal met-

ric such as accuracy to measure the model quality. Ac-

curacy represents the percentage of correctly predicted

data points, and the range is always from 0 to 1. Simi-

larly, the F1 score, ROC curve, and confusion matrix also

measure the model quality taking the false positive and

false negative ratios and multi-class results into consid-

eration [37]. While these metrics are intuitively under-

standable to classification algorithms, they are not appli-

cable to non-classification algorithms such as regression

or unsupervised learning. In addition, accuracy and sim-

ilar metrics require constructing a model and evaluating

that model against a labeled validation set, which intro-

duces an additional overhead to the job.1

Loss normalization. In contrast to the accuracy met-

rics, the loss function is calculated by the algorithm itself

in each iteration, incurring no additional overhead. How-

ever, each algorithm’s loss function has a different real-

world interpretation. The range, convexity, and mono-

tonicity of the loss functions depend on both the models

and the optimization algorithms [20]. Directly normal-

izing loss values requires a priori knowledge of the loss

range, which is impractical in an online setting.

1Validation is commonly used in ML training to prevent overfitting.

Due to the overhead, however, model evaluation on the validation set is

usually performed once every several iterations, not every iteration.
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Figure 5: Normalized ΔLoss for ML algorithms.

For example, clustering algorithms (e.g., K-Means)

use the sum of squared distances to the cluster centroids
as the loss function. Classification and regression algo-

rithms (e.g., SVM, Linear Regression, etc.) commonly

use hinge or logistic gradient loss which represents dis-
crepancy of prediction on the training data. The range of

the measured values can vary by orders of magnitude: K-

Means on our synthetic dataset reduces the loss from 300

down to 0, and the range highly depends on the absolute

coordinates of the data points; on the other hand, SVM

on a handwritten digit recognition dataset [34] reduces

the loss from 1 down to 0.4. Unfortunately, there are no

known analytical models to predict these ranges without

actually running the training jobs.

Based on the convergence properties of loss functions

(further explained in §4.2), we choose to normalize the

change in loss values between iterations, as opposed to

the loss values themselves. Most optimizers used in

training algorithms try to reduce the values of loss func-

tions, and for convex optimization problems, the values

decrease monotonically [22]. The convergence rate, be-

cause of the diminishing returns, generally decreases in

later iterations. So for a certain job, we normalize the

change of loss values in the current iteration with respect

to the largest change we have seen so far.

Figure 5 shows the normalized changes of loss val-

ues for common ML algorithms (summarized in Table 1).

Because a loss function eventually converges to a certain

value, the corresponding change of loss values always

converges to 0. As a result, even though the set of al-

gorithms have diverse loss ranges, we observe that they

generally follow similar convergence properties, and can

be normalized to decrease from 1 to 0. This helps SLAQ
track the progress of different training jobs, and, for each

job, correctly project the time to reach a certain loss re-

duction with a given resource allocation.

SLAQ supports a large class of important ML algo-

rithms, but currently does not support some non-convex

optimization algorithms due to the lack of convergence

analytical models.
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Algorithm Acronym Type Optimization Algorithm Dataset

K-Means K-Means Clustering Lloyd Algorithm Synthetic

Logistic Regression LogReg Classification Gradient Descent Epsilon [33]

Support Vector Machine SVM Classification Gradient Descent Epsilon

SVM (polynomial kernel) SVMPoly Classification Gradient Descent MNIST [34]

Gradient Boosted Tree GBT Classification Gradient Boosting Epsilon

GBT Regression GBTReg Regression Gradient Boosting YearPredictionMSD [35]

Multi-Layer Perceptron Classifier MLPC Classification L-BFGS Epsilon

Latent Dirichlet Allocation LDA Clustering EM / Online Algorithm Associated Press Corpus [36]

Linear Regression LinReg Regression L-BFGS YearPredictionMSD

Table 1: Summary of ML algorithms, types, and the optimizers and datasets we used for testing.

4.2 Measuring and Predicting Loss

After unifying the quality metrics for different jobs,

we proceed to allocate resources for global quality im-

provement. When making a scheduling decision for a

given job, SLAQ needs to know how much loss reduction

the job would achieve by the next epoch if it was granted

a certain amount of resources. We derive this informa-

tion by predicting (i) how many iterations the job will

have completed by the next epoch (§4.2.1), and (ii) how

much progress (i.e., loss reduction) the job could make

within these iterations (§4.2.2).

Prediction for iterative ML training jobs is different

from general big-data analytics jobs. Previous work [15,

38] estimates job’s runtime on some given cluster re-

sources by analyzing the job computation and communi-

cation structure, using offline analysis or code profiling.

As the computation and communication pattern changes

during ML model configuration tuning, the process of

offline analysis needs to be performed every time, thus

incurring significant overhead. ML prediction is also

different from the estimations to approximate analytical

SQL queries [16, 17] where the resulting accuracy can be

directly inferred with the sampling rate and analytics be-

ing performed. For iterative ML training jobs, we need to

make online predictions for the runtime and intermediate

quality changes for each iteration.

4.2.1 Runtime Prediction

SLAQ is designed to work with distributed ML training

jobs running on batch-processing computational frame-

works like Spark and MapReduce. The underlying

frameworks help achieve data parallelization for training

ML models: the training dataset is large and gets parti-

tioned on multiple worker nodes, and the size of mod-

els (i.e., set of parameters) is comparably much smaller.

The model parameters are updated by the workers, ag-

gregated in the job driver, and disseminated back to the

workers in the next iteration.

SLAQ’s fine-grained scheduler resizes the set of work-

ers for ML jobs frequently, and we need to predict the it-

eration of each job’s iteration, even while the number and

set of workers available to that job is dynamically chang-

ing. Fortunately, the runtime of ML training—at least

for the set of ML algorithms and model sizes on which

we focus—is dominated by the computation on the par-

titioned datasets. SLAQ considers the total CPU time of

running each iteration as c · S, where c is a constant de-

termined by the algorithm complexity, and S is the size

of data processed in an iteration. SLAQ collects the ag-

gregate worker CPU time and data size information from

the job driver, and it is easy to learn the constant c from

a history of past iterations. SLAQ thus predicts an itera-

tion’s runtime simply by c ·S/N, where N is the number

of worker CPUs allocated to the job.

We use this heuristic for its simplicity and accu-

racy (validated through evaluation in §6.3), with the as-

sumption that communicating updates and synchroniz-

ing models does not become a bottleneck. Even with

models larger than hundreds of MBs (e.g., Deep Neu-

ral Networks), many ML frameworks could significantly

reduce the network traffic with model parallelism [39] or

by training with relaxed model consistency with bounded

staleness [40], as discussed in §7. Advanced runtime pre-

diction models [41] can also be plugged into SLAQ.

4.2.2 Loss Prediction

Iterations in some ML jobs may be on the order of

10s–100s of milliseconds, while SLAQ only schedules on

the order of 100s of milliseconds to a few seconds. Per-

forming scheduling on smaller intervals would be dis-

proportionally expensive due to scheduling overhead and

lack of meaningful quality changes. Further, as disparate

jobs have different iteration periods, and these periods

are not aligned, it does not make sense to try to schedule

at “every” iteration of the jobs.

Instead, with runtime prediction, SLAQ knows how

many iterations a job could complete in the given

scheduling epoch. To understand how much quality im-

provement the job could get, we also need to predict the

loss reduction in the following several iterations.

A strawman solution is to directly use the loss reduc-

tion obtained from the last iteration as the predicted loss

reduction value for the following several iterations. This
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Figure 6: Predicting loss values with 3 methods.

method actually works reasonably well if we only need

to predict one or two iterations. However, this could per-

form poorly in practice when the number of iterations per

scheduling epoch is higher. This could be the case, for

example, when the training dataset is small or an abun-

dance of resources is allocated to the job.

We can improve the prediction accuracy by leverag-

ing the convergence properties of the loss functions of

different algorithms. Based on the optimizers used for

minimizing the loss function, we can broadly categorize

the algorithms by their convergence rate.

Algorithms with sublinear convergence rate. First-

order algorithms in this category2 have a convergence

rate of O(1/k), where k is the number of iterations [42].

For example, gradient descent is a first-order optimiza-

tion method which is well-suited for large-scale and dis-

tributed computation. It can be used for SVM, Logistic

Regression, K-Means, and many other commonly used

machine learning algorithms. With optimized versions

of gradient descent, the convergence rate could be im-

proved to O(1/k2).

Algorithms with linear or superlinear convergence
rates. Algorithms in this category3 have a convergence

rate of O(μk), |μ| < 1. For example, L-BFGS, which is

a widely used Quasi-Newton Method, has a superlinear

convergence rate which is between linear and quadratic.

It can be used for SVM, Neural Networks, and others.

Distributed optimization algorithms. Optimization

algorithms like gradient descent require a full pass

through the complete dataset to update the model’s pa-

rameters. This can be very expensive for large jobs which

2Assume the loss function f is convex, differentiable, and ∇ f is

Lipschitz continuous.
3Assume the loss function f is convex and twice continuously dif-

ferentiable, optimization algorithms can take advantage of the second-

order derivative to get faster convergence.

have data partitions stored on multiple nodes. Distributed

ML training benefits from stochastic optimization algo-

rithms. For example, stochastic gradient descent (SGD)

processes a mini-batch (samples extracted from a subset

of the training data) at a time and updates the parameters

in each step. The significant efficiency improvement of

SGD comes at the cost of slower convergence and fluctu-

ation in loss functions. In terms of number of iterations,

however, SGD still converges at a rate of O(1/k) with

properly randomized mini-batches.

With the assumptions of loss convergence rate, we use

curve fitting to predict future loss reduction based on the

history of loss values. For the set of machine learning

algorithms we consider, we use the history of loss values

at a certain time to fit a curve f (k) = 1
ak2+bk+c + d for

sublinear algorithms, or f (k) = μk−b + c for linear and

superlinear algorithms.

We further improve the prediction accuracy using ex-

ponentially weighted loss values. Intuitively, loss values

obtained in the near past are more informative for pre-

dicting the loss values in the near future. The weights

assigned to loss values decay exponentially when new it-

erations finish, and the parameters of the curve equations

get adjusted for each prediction.

Figure 6 shows the loss values predicted using the dif-

ferent methods described above. The strawman solu-

tion works well when predicting only one iteration in

advance, but degrades quickly as the number of itera-

tions to predict increases. The latter scenario is likely

because SLAQ makes a scheduling decision once every

epoch, which typically spans multiple iterations. In con-

trast, as shown in Figure 6(b), the weighted curve fitting

method achieves a low average prediction error of 3.5%

even when predicting up to 10 iterations in advance.

4.3 Scheduling Based on Quality Improvements

With accurate runtime and loss prediction, SLAQ allo-

cates cluster CPUs to maximize the system-wide quality.

SLAQ can flexibly support different optimization metrics,

including both maximizing the total (sum) quality of all

jobs, as well as maximizing the minimum quality (equiv-

alent to max-min fairness) across jobs.

Maximizing the total quality. We schedule a set of

J jobs running concurrently on the shared cluster for a

fixed scheduling epoch T , i.e., a new scheduling deci-

sion can only be made after time T . The optimization

problem for maximizing the total normalized loss reduc-

tion over a short time horizon T is as follows. Sum of

allocated resources a j cannot exceed the cluster resource

capacity C.

max
j∈J

∑ j Loss j(a j, t)−Loss j(a j, t +T )

s.t. ∑ j a j ≤C
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Algorithm 1 Maximizing Total Loss Reduction

– epoch: scheduling time epoch

– num_cores: total number of cores available

– alloc: number of cores allocated to jobs

– prior_q: priority queue containing jobs and their loss reduction

values if allocated with one extra core

1: function PREDICTLOSSREDUCTION( job)

2: pred_loss = PREDICTLOSS( job,alloc[ job],epoch)

3: pred_loss_p1 = PREDICTLOSS( job,alloc[ job]+1,epoch)

4: return pred_loss− pred_loss_p1

5: function ALLOCATERESOURCES( jobs)

6: for all job in active jobs do
7: alloc[ job] = 1

8: num_cores = num_cores−1

9: pred_loss_red = PREDICTLOSSREDUCTION( job)

10: prior_q.enqueue( job, pred_loss_red)
11: while num_cores > 0 do
12: job = prior_q.dequeue()
13: alloc[ job] = alloc[ job]+1

14: num_cores = num_cores−1

15: pred_loss_red = PREDICTLOSSREDUCTION( job)

16: prior_q.enqueue( job, pred_loss_red)
17: return alloc

When including job j at allocation a j, we are paying

cost of a j and receiving value of Δl j = Loss j(a j, t)−
Loss j(a j, t + T ). The scheduler prefers jobs with high-

est value of Δl j/a j; i.e., we want to receive the largest

gain in loss reduction normalized by resource spent.

Algorithm 1 shows the resource allocation logic of

SLAQ. We start with a j = 1 for each job to prevent star-

vation. At each step we consider increasing ai (for all

queries i) by one unit (in our implementation, one CPU

core) and use our runtime and loss prediction logic to get

the predicted loss reduction. Among these queries, we

pick the job j that gives the most loss reduction, and in-

crease a j by one unit. We repeat this until we run out of

available resources to schedule.

Maximizing the total loss reduction targets the cost-

effectiveness of cluster resources. This is desirable not

only on clusters used by a single company which may

have high resource contention, but potentially even on

multi-tenant clusters (clouds) in which revenue could be

directly associated with the total quality progress (loss

reduction) of ML jobs.

Maximizing the minimum quality. Below is the opti-

mization problem to minimize the maximum loss value

(or equivalently, maximizing the minimum quality) over

time horizon T . With a set of J jobs running concur-

rently, this scheduling policy makes sure no one is falling
behind. We require that all loss values be no bigger than

l and we minimize l.
min
j∈J

l

s.t. ∀ j : Loss j(a j, t +T )≤ l

∑ j a j ≤C
The system quality, in this case, is represented by the

loss value l of the worst job j. The only way we can

improve it is to reduce the loss value of j. Our heuristic

is thus as follows. We start with a j = 1, and at each step

we pick job i = argmin jLoss j(a j, t +T ). We increase its

allocation ai by one unit, recompute Lossi(ai, t +T ), and

repeat this process until we run out of resources.

Maximizing the minimum quality achieves max-min

fairness in model quality. It is especially useful for ML

applications that include multiple collaborative models,

and the overall quality is determined by the lowest qual-

ity of all the submodels. For example, a security appli-

cation for network intrusion detection should train mul-

tiple collaborative models identifying distinct attacking

patterns with max-min fairness in quality.

Prioritize jobs on shared clusters. The above

scheduling policies are based on the assumptions that

all the concurrently running jobs have equal importance,

and thus they will be treated equally when comparing

their quality. This can be easily adjusted to account for

jobs with different importance by adding a weight multi-

plier to the jobs, identically to how max-min fairness can

be easily changed to weighted max-min fairness.

For example, a cluster may host experiment jobs and

production jobs for ML training, and a higher weight

should be assigned to jobs for production uses. With

the same training progress, a job with a higher weight

will get its loss reduction proportionally amplified by the

scheduler compared to a normal job. Thus, high-priority

jobs generally get more iterations finished with SLAQ.

Mixing ML with other types of jobs. SLAQ can also

run non-ML jobs sharing the same cluster with approx-

imate ML jobs. For non-ML jobs, the scheduler falls

back to fairness or reservation based resource allocation.

This effectively reduces the total capacity C available to

all approximate ML jobs. SLAQ follows the same algo-

rithms to maximize the total or minimum quality under

varying resource capacity C.

5 Implementation

We implemented SLAQ within the popular Apache Spark

framework [19], and utilize its accompaning MLlib ma-

chine learning library [5]. Spark MLlib describes ML

workflow as a pipeline of transformers, and it provides

a set of high-level APIs to help design ML algorithms

on large datasets. Many commonly used ML algorithms

are pre-built in MLlib, including feature extraction, clas-

sification, regression, clustering, collaborative filtering,

and so on. These algorithms can easily be extended and

modified for specific use cases.

The SLAQ prototype is implemented based on the

Spark job scheduler. Multiple jobs place the ready tasks

into task pools, which are then controlled and dispatched
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by SLAQ scheduler. The driver programs of ML jobs con-

tinually report their loss value information for each iter-

ation they finish.

Token bucket. SLAQ uses a token bucket algorithm to

implement the resource allocation policies described in

§4.3. At each scheduling epoch, CPU time of all allo-

cated cores is added to each job as tokens. SLAQ assigns

tasks to available workers, and keeps track of how many

tokens are consumed by those tasks by collecting Spark

worker statistics. Tasks are throttled if the corresponding

job has used up its tokens.

Running unmodified ML applications. ML applica-
tions written using Spark MLlib can directly run on SLAQ
without any modifications. This is because SLAQ ex-

tends the underlying optimizers (e.g., SGD, L-BFGS,

etc.) APIs to report loss values at each iteration. We

cover most library algorithms provided in MLlib. Even

when it is necessary to add new library algorithms, one

can easily adopt SLAQ by reporting loss values using

SLAQ’s API. This is a one-line modification in most of

the algorithms present in MLlib.

6 Evaluation

In this section, we present evaluation results on SLAQ.

We demonstrate that SLAQ (i) provides significant im-

provement on quality and runtime for approximate ML

training jobs, (ii) is broadly applicable to a wide range of

ML algorithms, and (iii) scales to run a large number of

ML training algorithms on clusters.

6.1 Methodology

Testbed. Our testbed consists of a cluster of 20 in-

stances of c3.8xlarge machines on Amazon EC2 Cloud.

Each worker machine has 32 vCPUs (Intel Xeon E5-

2680 v2 @ 2.80 GHz), 60GB RAM, and is connected

with 10Gb Ethernet links.

Workload. We tested our system with the most com-

mon ML algorithms derived from MLlib with minor

changes, including (i) classification algorithms: SVM,

Neural Network (MLPC), Logistic Regression, GBT, and

our extension to Spark MLlib with SVM polynomial ker-

nels; (ii) regression algorithms: Linear Regression, GBT

Regression; (iii) unsupervised learning algorithms: K-

Means clustering, LDA. Each algorithm is further diver-

sified to construct different models. For example, SVM

with different kernels, and MLPC Neural Network with

different numbers of hidden layers and perceptrons.

Datasets. With the algorithms, our models are trained

on multiple datasets we collected from various online

sources with modifications, as well as on our synthetic

datasets. The datasets span a variety of types (plain

texts [36], images [34], audio meta features [35], and
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Figure 7: Comparing loss improvement and runtime
between SLAQ and fair scheduler.

so on [43]). The size of the distinct datasets we use in

each run is more than 200GB. In the experiments, all the

training datasets are cached as Spark Dataframes in clus-

ter shared memory. We set the fraction of data sample

processed at each iteration to be 100%, i.e., the entire

training data is processed in every iteration.

Baseline. The baseline we compare against is a work-

conserving fair scheduler. It is the widely-used schedul-

ing policy for cluster computing frameworks [9, 10, 11,

13, 14]. The fair scheduler evenly divides available re-

sources to all active jobs. It also dynamically adjusts re-

source allocations to fair share when new jobs join and

old jobs leave the system.

6.2 System Performance

6.2.1 Scheduler Quality and Runtime Improvement

To evaluate job quality improvement, we first run a set

of 160 ML training jobs with different algorithms, model

sizes, and datasets on the shared cluster of 20 nodes. In

the experiment, jobs are submitted to the cluster with

their arrival time following a Poisson distribution (mean

arrival time 15s). A job is considered fully converged

when its normalized loss reduction is below a very small

value, in this case, the loss reduction at the 100th itera-

tion.4 We compare the aggregate quality and runtime of

these jobs between SLAQ and the fair scheduler.

4Recall that the loss reduction for each iteration is independent of

the amount of resources the job is allocated; the resource allocation

instead dictates the amount of wall-clock time each iteration takes.
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Figure 8: Resource allocation across jobs. At the be-
ginning, jobs with the greatest 25% loss allocated vast
majority of resources; towards the end, the difference
in loss shrinks, the allocation is more spread out.

Figure 7(a) shows the average normalized loss values

across running jobs with SLAQ and the fair scheduler in

an 800s time window of the experiment. When a new

job arrives, its initial loss is 1.0, raising the average loss

value of the active jobs; the spikes in the figure indicate

new job arrivals. Yet because SLAQ allocates resources

to maximize the total quality improvement (loss reduc-

tion), the average loss value of all active jobs using SLAQ
is much lower than with the fair scheduler. In particu-

lar, SLAQ’s average loss value is 0.49 at each scheduling

epoch, which is 73% lower than that of the fair scheduler.

Figure 7(b) shows the average time it takes a job to

achieve different loss values. As SLAQ allocates more re-

sources to jobs that have the most potential for quality

improvement, it reduces the average time to reach 90%

(95%) loss reduction from 71s (98s) down to 39s (68s),

45% (30%) lower. At the very end of the job execu-

tion, further iterations take longer time as the job quality

is less likely to be improved. Thus, in an environment

where users submit exploratory ML training jobs, SLAQ
could substantially reduce users’ wait times.

Figure 8 explains SLAQ’s benefits by plotting the allo-

cation of CPU cores in the cluster over time. Here we

group the active jobs at each scheduling epoch by their

normalized loss: (i) 25% jobs with high loss values; (ii)

25% jobs with medium loss values; (iii) 50% jobs with

low loss values (almost converged). With a fair sched-

uler, the cluster CPUs should be allocated to the three

groups proportionally to the number of jobs. In contrast,

SLAQ adapts to the job quality improvement, and allo-

cates much more computation resource to (i) and (ii). In

fact, jobs in group (i) take 60% of cluster CPUs, while

jobs in group (iii), despite having 50% of the population,

get only 22% of cluster CPUs on average. SLAQ trans-

fers many resources from nearly converged jobs to the

jobs that have the most potential for significant quality

improvement, which is the underlying reason for the im-

provement in Figure 7.
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Figure 9: The performance difference between SLAQ
and a fair resource scheduler is more significant un-
der workloads with greater contention, e.g., jobs ar-
riving with a mean arrival time of 4s compared to 10s.

6.2.2 Handling Different Workloads

The achieved qualities of training jobs strongly depend

on the cluster workload. As the workload increases, it be-

comes more important to efficiently utilize the resources.

In this experiment, we vary the mean arrival time of new

jobs, which in turn varies the number of concurrent jobs,

and observe how SLAQ and the fair scheduler handle re-

source contention under different workloads.

Figure 9 illustrates that SLAQ achieves a greater rela-

tive benefit over a fair schedule under more contentious

or aggressive workloads. We start with a mean arrival

time of 10s (or equivalently, 6 new jobs per minute). Un-

der the light workload, the computation resources are rel-

atively abundant for each job, so the time to reach 90%

(95%) loss reduction is similar for both schedulers, with

SLAQ performing 23% (20%) better.

As we increase the system workload with smaller

mean job arrival times, cluster resource contention in-

creases. SLAQ allocates resources to the jobs with the

greatest potential. As a result, when the mean arrival

time is 4s (15 new jobs per minute), SLAQ achieves an

average time for jobs to reach 90% (95%) loss reduction

that is 44% (30%) less than the fair scheduler.

6.3 Robustness of Prediction

SLAQ relies on an estimate of the expected loss reduc-

tion of a job, given a certain resource alloction (see §4.2).

To ensure stability, SLAQ makes a reallocation decision

only once per scheduling epoch. Thus, the scheduler re-

quires (i) the loss predictor to precisely estimate the loss

values at least a few iterations in advance, and (ii) the

runtime predictor to accurately report how long each it-

eration takes with a certain number of allocated cores.

Figure 10(a) plots the loss prediction error for the

types of ML algorithms we tested (Table 1). We compare

the loss prediction error relative to the true values for 10

iterations, with both strawman and weighted curve fitting

methods of §4.2. Our prediction achieves less than 5%

prediction errors for all the algorithms.
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Figure 10: SLAQ loss / runtime prediction and overhead.

Recall that SLAQ uses a simple heuristic to estimate

the iteration runtime with N cores. To demonstrate that

each iteration’s CPU time is c · S (c as a constant), re-

gardless of how many workers are allocated, we evaluate

the total CPU time to complete an iteration with a fixed

data size S. We vary the number of workers (32 cores

each) between 1 and 8 and training neural network mod-

els of sizes from 10KB to 10MB. Figure 10(b) illustrates

that, at least for ML models smaller than tens of MB,

communication and model synchronization do not affect

processing time. Therefore, when dynamically changing

N, an iteration’s time can simply be estimated as c ·S/N.

We discuss extending SLAQ to large models in §7.

6.4 Scalability and Efficiency

Figure 10(c) plots the time taken by SLAQ to sched-

ule tens of thousands of concurrent jobs on large clus-

ters (simulating both the jobs and worker nodes). SLAQ
makes its scheduling decisions in between hundreds of

milliseconds to a few seconds, even when scheduling

4000 jobs across 16K worker cores. These decisions

are made each scheduling epoch, a timeframe of a few

seconds. As shown in Figure 6, the more iterations in

advance SLAQ predicts, the larger potential error it will

incur. The agility of SLAQ enables the scheduler to pre-

dict only a few iterations in advance for each ML training

job, adjusting its resource allocation decisions frequenty

to meet the jobs’ quality goals. SLAQ’s scheduling time

is comparable to the scalability of schedulers in many big

data clusters today, leading us to conclude that SLAQ is

sufficiently fast and scalable for (rather aggressive) real-

world needs.

7 Discussion

Communication overhead. SLAQ is tested with ML

models that have a moderate number of parameters. Re-

cent developments in distributed frameworks for training

ML models, especially deep neural networks (DNN), in-

cur more communication and synchronization overhead

between the ML job driver and worker nodes. For ex-

ample, with a large number of perceptrons and multiple

layers, a DNN model can grow to tens of GBs [44, 45].

Since our current implementation is based on Spark,

the driver essentially becomes a single-node parameter

server [46], which is responsible for gathering, aggregat-

ing, and distributing the models in every iteration. This

communication overhead—due to Spark’s architecture—

limits our ability to train large models.

Several solutions have been proposed to mitigate the

communication overhead problem. Model paralleliza-

tion using architectures based on parameter servers or

graph computing proportionally scale the model serv-

ing nodes with the workers [7, 8, 39, 47]. With these

optimized frameworks, SLAQ’s performance improve-

ment based on online prediction and scheduling heuris-

tics should apply to large ML models.

Distributed ML training with relaxed consistency.
Distributed ML frameworks used in practice leverage a

relaxed consistency model with bounded staleness [40]

to reduce the communication costs during model syn-

chronization. The convergence progress of the underly-

ing ML training algorithms is typically robust to a cer-

tain degree of fluctuation and slack, so the efficiency im-

provement obtained from the parallelism outweighs the

staleness slowdown on convergence rate.

A commonly used execution model with bounded stal-

eness is Bulk Synchronous Parallel (BSP), which allows

multiple workers to individually update on partitioned

training data and only synchronizes their models every

several iterations [30, 47, 48]. We can extend SLAQ to

support these frameworks by collecting the batch iter-

ation time on each worker, and the model quality and

communication time at each synchronization barrier to

help estimate the loss reduction under the two levels of

iterativeness. In fact, the convergence property of ML

training is also studied in [48] with the BSP execution

model under various conditions (e.g., varying communi-

cation latency and cluster sizes).

Non-convex optimization. SLAQ’s loss prediction is

based on the convergence property of the underlying op-

timizers and curve fitting with the loss history. Loss

functions of non-convex optimization problems are not

guaranteed to converge to global minima, nor do they
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necessarily decrease monotonically. The lack of an an-

alytical model of the convergence properties interferes

with our prediction mechanism, causing SLAQ to under-

estimate or overestimate the potential loss reduction.

One solution to this problem is to let users provide the

scheduler with hint of their target loss or performance,

which could be acquired from state-of-the-art results on

similar problems or previous training trials. The conver-

gence properties and optimization of non-convex algo-

rithms is being actively studied in the ML research com-

munity [49, 50]. We leave modeling the convergence of

these algorithms to future work.

8 Related Work

Approximate computing systems. Many systems [23,

51, 52, 17, 24, 25] allow users to get approximate results

with significantly reduced job completion time. Online

aggregation databases [16, 26] generate approximate re-

sults and iteratively refine the quality. While we designed

SLAQ for iterative ML training jobs, our techniques are

broadly applicable to scheduling data analytics systems

that iteratively refine their results.

Scheduling ML systems. Large-scale ML frame-

works [5, 7, 8, 39, 53, 54, 55] optimize the computation

and resource allocation for multi-dimensional matrix op-

erators within a training job. These systems greatly ac-

celerate the training process and reduce job’s synchro-

nization overhead. As a cluster scheduler, SLAQ could

support different underlying ML frameworks (with mod-

ifications) in the future, and allocate resources at the job

level to optimize across different ML training jobs.

ML model search. Several systems [2, 41] are de-

signed to accelerate the model searching procedure. Tu-

PAQ [41] uses a planning algorithm to discover hy-

perparameter settings and exclude bad trials automati-

cally. SLAQ is designed for ML training in general ex-

ploratory settings on multi-tenant clusters. Automated

model search systems could work in conjuction with

SLAQ for faster decisions and better cluster utilization.

Cluster scheduling systems. Existing cluster sched-

ulers [9, 10, 11, 12, 13, 14] primarily focus on resource

fairness, job priorities, cluster utilization, or resource

reservations, but do not take job quality into consider-

ation. They mostly ignore the quality-time trade-off, and

the quality trade-off between jobs. This trade-off space

is crucial for ML training jobs to get approximate results

with much less resource usage and lower latency.

Estimation of resource usage and runtime.
Ernest [15] predicts job quality and runtime based

on the internal computation and communication struc-

tures of large-scale data analytics jobs. CherryPick [38]

improves cloud configuration selection process using

Bayesian Optimization. Despite the generality, these

systems require jobs to be analyzed offline. When users

debug and adjust their models, the computation structure

is likely to change very often, and thus the offline

analysis will bring significant overhead. NearestFit [56]

provides a progress indicator for a broad class of

MapReduce applications with online prediction. SLAQ
uses also online prediction to avoid offline overhead,

and leverages the iterative nature of ML training jobs to

improve the accuracy of prediction.

Deadline-based scheduling. Many systems [57, 58,

59, 60] utilize scheduling to meet deadlines for batch

processing jobs or to reduce lag for streaming analyt-

ics jobs. Jockey [61] uses a combination of offline pre-

diction and dynamic resource allocation to ensure batch

processing queries meet their latency SLAs while mini-

mizing their impact on other jobs sharing the cluster. In-

stead of hard deadlines, some real-time systems [62, 63]

use soft deadlines and penalize additional delay beyond

the deadlines. However, these systems mainly consider

the quality-runtime trade-offs for a single job, instead of

optimizing across multiple approximate jobs.

Utility scheduling. Utility functions have been widely

studied in network traffic scheduling to encode the bene-

fit of performance to users [64, 65, 66]. Recent work on

live video analytics [67] leverages utility-based schedul-

ing to provide a universal performance measurement to

account for both quality and lag.

9 Conclusion

We present SLAQ, a quality-driven scheduling system de-

signed for large-scale ML training jobs in shared clusters.

SLAQ leverages the iterative nature of ML algorithms and

obtains application-specific information to maximize the

quality of models produced by a large class of ML train-

ing jobs. Our scheduler automatically infers the models’

loss reduction rate from past iterations, and predicts fu-

ture resource consumption and loss improvements online

for subsequent allocation decisions. As a result, SLAQ
improves the overall quality of executing ML jobs faster,

particularly under resource contention.
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