
Popularity Prediction of Facebook Videos
for Higher Quality Streaming

Linpeng Tang∗, Qi Huang[, Amit Puntambekar[, Ymir Vigfusson†, Wyatt Lloyd‡,[, Kai Li∗
∗Princeton University, †Emory University/Reykjavik University, ‡University of Southern California, [Facebook Inc.

Abstract

Streaming video algorithms dynamically select between
different versions of a video to deliver the highest quality
version that can be viewed without buffering over the
client’s connection. To improve the quality for viewers,
the backing video service can generate more and/or better
versions, but at a significant computational overhead.
Processing all videos uploaded to Facebook in the most
intensive way would require a prohibitively large cluster.
Facebook’s video popularity distribution is highly skewed,
however, with analysis on sampled videos showing 1% of
them accounting for 83% of the total watch time by users.
Thus, if we can predict the future popularity of videos, we
can focus the intensive processing on those videos that
improve the quality of the most watch time.

To address this challenge, we designed Chess, the first
popularity prediction algorithm that is both scalable and
accurate. Chess is scalable because, unlike the state-of-
the-art approaches, it requires only constant space per
video, enabling it to handle Facebook’s video workload.
Chess is accurate because it delivers superior predictions
using a combination of historical access patterns with
social signals in a unified online learning framework. We
have built a video prediction service, ChessVPS, using
our new algorithm that can handle Facebook’s workload
with only four machines. We find that re-encoding popular
videos predicted byChessVPS enables a higher percentage
of total user watch time to benefit from intensive encoding,
with less overhead than a recent production heuristic, e.g.,
80% of watch time with one-third as much overhead.

1 Introduction

Video is increasingly a central part of people’s online
experience. On Facebook alone, there are more than 8
billion video views each day [2]. Clients stream these
videos by progressively downloading video chunks from
a provider according to an adaptive bitrate (ABR) [33, 39]
algorithm. ABR algorithms strive to dynamically select
the version of a video with the highest bitrate a connection
can sustain without pausing. Higher bitrates provide
higher quality, but are larger and thus require clients
to have higher-bandwidth connections. The different
versions of the video used by ABR algorithms are typically
generated when a video is uploaded [3]. Generating the

different versions for the large volumes of videos uploaded
to Facebook each day requires a large fleet of servers.

There is a trade-off between the amount of computation
spent processing a video to prepare it for streaming and
the quality of experience for viewing that video. Videos
uploaded to Facebook are by default encoded to a small
number of standard versions with FFmpeg [16]. However,
investing in more computation can improve playback
experience by improving or increasing the choices for the
ABR algorithm. First, more computation can improve
the choices by further compressing a video at a fixed
quality. For instance, Facebook’s QuickFire engine [1]
uses up to 20× the computation of the standard encoding
to produce a version of the video with similar (or higher)
quality that is ~20% smaller than the standard encoding.
Second, more computation can increase the choices for
the streaming algorithm by generating more versions
of the video at different bitrates. In both cases, added
computation increases the highest quality version of a
video that can be streamed for some users.

Unfortunately, it is infeasible to compute the highest-
quality encodings for all videos. Using QuickFire and
increasing the number of versions of each video, for
example, would require a fleet at several tens the scale of
the already large processing fleet at Facebook. Fortunately,
video popularity is highly skewed, with 1% of the videos
accounting for over 80% of the watch time, i.e., the time
users spend viewing video. This skewenables us to achieve
most of the quality improvement with only a fraction of the
computation by generating the highest-quality encodings
for only the most popular videos.

The challenge in exploiting this insight is in scalably and
accurately predicting the videos that will become popular.
State of the art popularity prediction algorithms [9, 10, 45]
are accurate but do not scale to handle the Facebook
video workload because they keep per-video state that is
linear in its past requests. Simple heuristics that exploit
information from the social network scale, but are not
accurate. For example, predicting popular videos based on
owner like count requires 8×more resources to cover 80%
of watch time than what would be needed with clairvoyant
predictions, which only runsQuickFire encoding on videos
with the largest future watch time.

We overcome this challenge with Chess—Constant
History, Exponential kernels, and Social Signals—the



first scalable and accurate popularity prediction algo-
rithm. Chess is scalable because it uses constant per-video
state, needing only ~20GB to handle the Facebook video
workload. Chess is accurate: it outperforms even the
non-scalable state-of-the-art algorithm. Two key insights
led to Chess. First, we approximate the history of all
de-identified past accesses to a video with exponentially-
decayed watch time (§4.1) in a few fixed-size time win-
dows, each of which is not highly accurate but small and
fast to compute. Second, we combine those constant
sized historical features through a continuously updated
neural network model to obtain state-of-the-art accuracy,
and then further improve it by leveraging social network
features—e.g., the like count of video owner—while re-
maining scalable.

We validate Chess’s scalability by building ChessVPS,
a video prediction service based on Chess, that requires
only four machines to provide popularity prediction for
all of Facebook’s videos. ChessVPS has been deployed,
providing query-based access to new predictions updated
every ten minutes, although its predictions are not yet
used to inform encoding choices in production.

Our evaluation compares Chess against the state-of-the-
art non-scalable prediction algorithms, simple scalable
heuristics, and a clairvoyant predictor using traces of
Facebook’s video workload. We find Chess delivers
higher accuracy than all achievable baselines, and provides
QuickFire-encoded videos for more user watch time with
less re-encoding. Compared to the heuristic currently used
in production, Chess improves the watch time coverage
of QuickFire by 8%–30% using same CPU resources for
re-encoding. To cover 80% of watch time, Chess reduces
the overhead from 54% to 17%.

The contributions of this paper include:

• The case for video popularity prediction services to
improve streaming quality. (§3)

• The design of Chess, the first scalable and accurate
popularity prediction algorithm. (§4)

• The implementation of ChessVPS, a prediction service
for Facebook videos that uses only four machines. (§5)

• An evaluation using Facebook’s workload that shows
Chess achieves state-of-the-art prediction accuracy, and
delivers high watch time coverage for QuickFire with
low CPU overhead from re-encoding. (§6)

2 Background

The workflow of videos on Facebook, which starts with an
upload and finishes with streaming, is shown in Figure 1.
When a video is uploaded, it is immediately encoded
with the H.264 codec to a few standard versions for
streaming [40]. The encoded files are durably stored in a
backend [5, 32]. In addition, the original upload is kept

Backend Storage
Original Videos

(Temporary)
Encoded Videos

Standard H.264, QuickFire

Write

Standard/QF 
Video Chunks 

Read

Upload

Streaming Video Engine

Bit-rate
selector

Chunks

FBCDN

ABR Video Client

GET

Figure 1: The workflow of videos on Facebook. Addi-
tional processing in the Streaming Video Engine can
lead to higher quality video delivery to the client by
giving the ABR algorithm better choices.

for several days during which it can be re-encoded with
QuickFire, used to generate more versions, or both.
Videos are shown to users by a player that downloads

progressive chunks of the video from a content distribution
network [22, 38]. The player dynamically tries to stream
the highest quality version of a video it canwithout pausing
using an ABR algorithm [33, 39]. There are a variety
of ABR algorithms [23, 24, 25, 42], but they typically
estimate the bandwidth of a user’s connection and then
select the largest bitrate that is less than that bandwidth.
Generating additional bitrate versions of a video thus

improves quality for some users. For example, consider
two versions of a video with bitrates of 250 Kbps and 1
Mbps. Generating a third version with a bitrate of 500
Kbps would improve quality for all users with bandwidth
between 500 Kbps and 1Mbps. This is one way additional
processing can yield higher-quality video streaming.

Another way to improve video quality is by generating
more compressed versions of a video that yield similar or
higher video quality at a lower bitrate. FFmpeg’s H.264
encoding offers several preset parameters that range from
“ultrafast” to “veryslow”. Moving to slower encodings
yields more compressed versions with the same quality.
Facebook’s QuickFire [1, 41] technology provides a more
extreme trade-off. It intelligently tries many encodings for
each chunk of a video, and picks the smallest one with sim-
ilar or higher quality—client-side decoding is unaffected
because each chunk is H.264 compatible. QuickFire can
be configured to try 7–20 encodings; we use 20 in this
work due to its higher compression.

We quantified this processing/bitrate trade-off for the
FFmpeg presets and QuickFire for 1,000 randomly se-
lected videos uploaded to Facebook in one month of 2016.
The results of this experiment confirmed that more pro-
cessing can be used to find better-compressed versions of
a video at the same quality. In particular, using QuickFire



takes 20× the processing of “veryslow”1 but yields a 21%
reduction in bitrate for the same quality. This in turn in-
creases the quality of video for some users. For example,
consider a 1 Mbps “veryslow” encoding. Generating the
QuickFire encoding would yield the same quality at ~800
Kbps. Users with bandwidth between 800 Kbps and 1
Mbps could then stream this higher quality version.
More processing improves the quality of videos that

users can stream. Maximally processing all videos would
require increasing the already huge number of processing
machines by 1-2 orders of magnitude, which is infeasible.
Our goal in this paper is to instead extract most of the
benefit of using the maximum processing on all videos,
but without requiring a substantially larger fleet of ma-
chines. We next explain how a scalable and accurate video
popularity prediction service helps meet this objective.

3 Motivation and Challenges

This section makes the case for a video popularity predic-
tion service and lays out the challenges of building one,
including the need to be quick, accurate, and scalable.

3.1 High Skew Motivates Prediction
Predicting the popularity of videos is compelling because
it can guide more processing to where it can do the most
good. A small core of videos in Facebook’s workload
account for most of the time spent watching videos. Thus,
if we know what videos will be watched the most in the
future, we can focus additional processing on them.
Figure 2a quantifies the skew of Facebook’s video

workload with the watch time of 1 million randomly
sampled videos in one month. The left sub-figure shows
the watch time of each unique video, ordered by popularity
rank in a log-log scale. For example, the most popular
video in the sampled trace has 13 years ofwatch time in one
month, while the 10, 000th most popular video out of the
million is watched for 42 hours. The shown distribution of
watch times follows a power-law with exponent α = 1.72.
(Related work has shown that access to Facebook photos
also follows a power-law distribution with α = 1.84 [22].)
The right sub-figure of 2a shows the potential benefit

from exploiting this skew. The cumulative ratio of video
watch time represented by videos with a given rank or
higher is depicted. For example, the top 0.1%/1% of
videos account for 62%/83% of the watch time, respec-
tively. Thus, if we use the maximum processing on only
1% of videos we would benefit from increased streaming
quality for over 80% of all video watch time. The cumu-
lative watch time ratio is an upper bound on the benefits
of popularity prediction because it ranks videos based on

1We could not directly measure the processing time of QuickFire so
we approximate it as 20× that of “veryslow” because it encodes each
chunk of the video ~20 times

100101102103104105106

Video rank

102
103
104
105
106
107
108
109

W
a
tc

h
 t

im
e
 (

se
c)

100101102103104105106

Video rank

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m

u
la

ti
v
e
 r

a
ti

o

(a) Watch time distribution of sampled videos

0 1 2 3 4 5 6 7
Time since video upload (day)

0.0
0.2
0.4
0.6
0.8
1.0
1.2

H
o
u
rl

y
 w

a
tc

h
 t

im
e
 

 (
se

c)

1e7

A

B

C

D

E

(b) Hourly watch time of five example videos

Figure 2: Facebook videos access patterns.

their exact accesses, i.e., it represents the benefit from
having perfect predictions at the time a video is uploaded.

3.2 Prediction is Challenging
The difficulty in exploiting the skew lies in being able to
quickly, accurately, and scalably predict the popularity
of individual videos. Prediction needs to be quick so
not many views of the video are missed while waiting
for prediction results. Prediction needs to be accurate so
computation is spent on videos that reap the most benefit.
Finally, prediction needs to be scalable so it can handle
video workloads at a global scale like Facebook.

Tomotivate each of these points, wemanually examined
the access pattern of 25 videos in the one month trace
with rank 10,000–10,024, i.e., they are near the cut-off
for the top 1% of popularity and all have a similar total
watch time. Figure 2b shows the access patterns of 5
representative videos. The other 20 videos have access
patterns that resemble one of the depicted patterns.

The Need for Quick Prediction The video access pat-
tern peaks quickly for videos A – D in Figure 2b. This
indicates we need our video prediction service to run
quickly. If our prediction takes longer than the interval
between when a video is uploaded and when it peaks,
then much of the watch time will have already taken place
when the prediction is ready. To further demonstrate this
point, we analyzed the full one month trace and found that
the most popular 1/4/16 hours of each video accounts for
6.3%/19%/29% of watch time. Previous work on video
popularity [18, 36] considered popularity on a daily basis.
Such methods, if applied on our workload, would have
a large delay in prediction and would miss a significant
portion of the total watch time. Instead, we aim for quick
predictions on the order of minutes.



The Need for Accurate Prediction The variety of ac-
cess patterns in Figure 2b suggests that accurately pre-
dicting future watch time will be challenging. Prediction
needs to be accurate so additional computation is used
where it will be the most useful. Using simple heuris-
tics based on features from the social network is quick,
but unfortunately is not accurate. For instance, a recent
production heuristic was to re-encode a video if the like
count of the owner exceeded 10,000. As our evaluation in
Section 6 shows, this heuristic is inaccurate: it requires
re-encoding 8× as many videos as a clairvoyant predictor
to cover 80% of the video watch time. Our goal is to
provide predictions with higher accuracy so higher watch
time coverage can be achieved with fewer resources.

The Need for Scalable Prediction Video popularity
prediction for Facebookmust be scalable because there are
tens of millions of videos uploaded each day. Identifying
popular videos thus requires predicting the popularity
of a large active set of videos. In the video prediction
service described in Section 5 we track 80 million videos.
The previous state of the art in popularity prediction,
SEISMIC, is accurate but unfortunately does not scale to
our workload because it stores the timestamp and watch
time of each past request. This linear per-video state
would require ~10TB of memory to make predictions for
80 million videos, and methods requiring more features
per request [10] have an even larger memory usage.

4 The Chess Prediction Algorithm

Achieving high watch time coverage through additional
processing requires quick, accurate, and scalable predic-
tion of video popularity. This section describes the core of
Chess, the novel prediction algorithm we designed with
these goals in mind. We focus on three key features:

1. Harnessing past access patterns with constant space
and time overhead.

2. Combining different features in a unified model.
3. Efficient online training using the recent access data.

4.1 Utilizing Past Access Patterns with EDWT

A common theme in popularity prediction is exploiting
past access patterns [13, 36, 43, 45]. The state of the art
approaches do so by modeling behavior as a self-exciting
process that predicts future accesses based on all past
accesses. A past access at time t is assumed to provide
some influence on future popularity at time τ, as modeled
by a kernel function φ(τ − t). The kernel function, φ,
is a probability density function defined on [0,+∞), and
it is commonly chosen to be a decreasing function, so
that a session’s influence is initially high and gradually
converges to zero over time.

Self-exciting processes predict future popularity—i.e.,
watch time—based on the sum of the influence of all past
requests from the current time to infinity. Let i be an index
over the past viewing sessions of a video. Let ti and xi be
the corresponding timestamp and watch time, respectively
of the session. Then, for the purposes of ranking different
videos, the total future watch time for i is modeled as

F̃ (t) =
∑
ti ≤t

∫ +∞

τ
xiφ(τ − ti)dτ.

One key insight in Chess is using a kernel that allows
for efficient updates to popularity predictions. Previous
popularity prediction algorithms used power-law kernels
that provide high accuracy predictions, but require each
new prediction to compute over all past accesses [13, 45].
This requires storage and computation linear in the past
requests to each video, which is not feasible in our setting.
In contrast, we set φ to be the exponential kernel, or
φ(t) = 1

w exp (−t/w), where w represents a time window
modeling how long past requests’ influence lasts into the
future. Such a kernel allows us to simplify the computation
of a new prediction to only require the last prediction, F̃,
and its timestamp, u, which drastically reduces the space
and time overhead. Below is the simplified update rule for
a new session with watch time x beginning at time t with
a previous session having occurred at time u < t. The
resulting prediction is the exponentially decayed watch
time (EDWT):

F̃ (t) =
∑
ti ≤t

xi

∫ ∞

t

φ(τ − ti)dτ

=
x
w
+

∑
ti ≤u

xi exp
(
−(t − ti)

w

)
=

x
w
+ exp

(
−(t − u)

w

) ∑
ti ≤u

xi exp
(
−(u − ti)

w

)
=

x
w
+ exp

(
−(t − u)

w

)
F̃ (u). (1)

4.2 Combining Efficient Features in a Framework
While EDWTs are efficiently computable, they are weaker
predictors of popularity than self-exciting processes with
more complex kernels as shown in our evaluation (§6). We
overcome this limitation of EDWTs with the second key
insight in the Chess design: combining many weak, but
readily computable, signals through a learning framework
achieves high accuracy while remaining efficient. We
use a neural network as our learning framework with two
types of features as input: stateless and stateful.
Stateless features are quantities that do not change

dramatically during the life-cycle of a video. A prediction
service does not need to keep any state associated with
these features or their past values. Instead it can query



them from the social network at prediction time. For
our purposes, the most important are the social features,
including the number of likes and friends of the video
owner. They also include the video’s length, its age, and
several other easily queryable social features.

Stateful features are quantities that can vary dynamically
throughout the life-cycle of the video. Past access patterns
are one type of stateful feature. The changing pattern of the
number of comments, likes, shares, saves for later viewing,
etc. are all stateful features as well. They are stateful in
that a prediction service needs to keep state associatedwith
them between predictions. We use exponential kernels to
keep this state constant per-video and we combine four
kernels with different time windows—1, 4, 16, and 64
hours—to capture more complex patterns.
We use the stateless and stateful features as input to a

2-layer neural network (NN) with 100 hidden nodes for
predicting total future watch time. We find that neural
networks reduce the prediction error by 40% compared
to linear models, but more complex models, i.e., adding
more layers or using more hidden nodes do not further
improve accuracy. We initially selected all features from
the social network that we thought could provide some
signal and then trimmed those that did not have an effect
on prediction accuracy. We made features stateless or
stateful based on our intuition, e.g., friends of the video
owner is stateless because it changes little during the
lifetime of the video. We also tried several different sets
of time windows for stateful features and settled on 1,
4, 16, and 64 hours as providing the highest accuracy.
We did this feature engineering using a setup similar to
the single prediction experiments in our evaluation, on a
separate and earlier month-long trace.
Another important technique for boosting accuracy is

logarithmic scaling of both the feature values and predic-
tion targets. Because these values can vary from 10-108

depending on video popularity, they need to be prop-
erly scaled to avoid optimization difficulties. Although
linear scaling, in the form of standardization [6], is the
commonly used method in statistical learning, we find
that logarithmic scaling, i.e., x → log(x + 1), delivers
much better performance for our workload. It ensures
the model is not biased towards only predicting extremely
popular videos, achieves good prediction accuracy across
the whole popularity spectrum, and improves the coverage
ratio of QuickFire by as much as 6% over linear scaling.
We use this method in all our evaluations.

4.3 Efficient Online Model Update

Naively training our model would require a large set of
training examples with their full future watch time, which
is unknown. To address this issue, we use an example
queue to generate training examples from the recent past,
and use them as approximations for the future. When

a video is accessed, its current state is appended to the
queue. While the video is in the queue we track its watch
time and feature values. Later, when an example is evicted
from the queue it becomes training data with the difference
in watch time between its entry and eviction used as the
target future watch time. As an added benefit, because
examples keep entering and being evicted from the queue,
the prediction model is continuously updated at a constant
learning rate to keep up with changes in the workload.
The example queue needs to be carefully designed in

order to minimize the memory and CPU overhead while
achieving the best model accuracy. We found that two
design parameters are key to balancing this trade-off:
prediction horizon and example distance. Section 6.3
investigates the effect of varying each parameter and
shows that setting them properly leads to high accuracy
with low memory and CPU overhead.

The prediction horizon is the time difference between
entry and eviction of examples from the queue. In other
words, an example is evicted and becomes training data
when its age in the queue exceeds the prediction horizon.
A larger horizon provides a better approximation of total
future watch time, but it also results in a longer queue with
higher memory usage. For our workload, a prediction
horizon of 6 days achieves a good tradeoff with high
accuracy and low overhead.
We found our example queue was flooded by data

points from the most popular videos due to the skewed
power law distribution in video access. Many of these
data points were effectively redundant and did not help
improve accuracy. This is because the input values and
the prediction target will be very similar for the same
video at two nearby time points. We skip these redundant
examples using an admission policy that only allows a
new example into the queue if the difference between its
timestamp and the most recent example for the same video
is greater than a threshold. We call this threshold the
example distance D because it ensures there is at least D
time between all examples of the same video. Although
this alters the training data distribution, we find D = 2h
achieves high accuracy while greatly reducing memory
overhead, due to the high skew and large volume of data.

5 The Implementation of ChessVPS

To make video popularity predictions continuously avail-
able we implemented the Chess video prediction service
(ChessVPS). ChessVPS validates the scalability of our
design by providing popularity prediction for Facebook’s
video workload while running on only four machines.

Figure 3 provides a high-level view of the architecture of
ChessVPS. The service uses 8 workers distributed across
4 machines to generate predictions on the full workload.
The key steps in the process are: 1) ingesting access logs,



2) querying for additional features, 3) making predictions,
4) serving predictions, and 5) updating the models.

Ingesting Access Logs Video accesses on Facebook
are logged to Scribe [15]. We ingest the access logs
by continuously streaming them from Scribe. To han-
dle this streaming load—as well as distribute prediction
computation—we use 8 worker processes on 4 machines.
The access logs in Scribe are sharded based on video ID
and each worker streams one-eighth of the shards.

Querying for Additional Features Each worker aug-
ments the access logs with the additional features it queries
from TAO [7], Facebook’s cache for the social graph. Cur-
rent values of these features are already stored in TAO,
e.g., the number of likes of a video is stored in TAO so it
can be presented along with the video. Stateless features
are directly added to each access of a video. The 4 expo-
nentially decayed counters for each stateful features, with
varying time windows, are updated upon every access,
and the values added to the feature set as well.
We reduce the overhead from querying for additional

features in three ways. First, we batch queries and only
dispatch them once we have ingested 1000 accesses. Sec-
ond, we deduplicate queries for the same video in a batch.
Third, we cache results from TAO for 10 minutes, which
reduces the load we impose on TAO by over 50%.

Making and Serving Predictions Each worker main-
tains a table with its most recent predictions for the top 10
million most popular videos in its shard. The 80 million
videos in all shards encompass the actively accessed video
working set on Facebook. After the worker queries TAO
for additional features, it updates the exponentially de-
cayed kernels, and feeds all feature values into the neural
network to calculate a prediction—the design of Chess
has enabled us to do all this in real-time, on a small set
of machines. This prediction is then used to update the
video’s entry in the table. Every 10 minutes each worker
scans its table and sorts videos based on their predictions.
An aggregator in each machine collects the top 1 million
videos from the collocated workers, and then it broad-
casts its predictions to all aggregators and waits for their
predictions. Once an aggregator has the top 1 million
predictions from all 8 workers, it merges and sorts them.
It then caches the aggregated predictions and uses them to
answer requests for the next 10 minutes. Other services,
e.g., a re-encoding service, can query any worker to learn
the videos that we predict to be the most popular.

Updating the Model and Memory Overhead To re-
duce space overhead we maintain one model and example
queue per machine (shared between two workers). We use
an example queue with a prediction horizon of 6 days and
an example distance of 2 hours to keep the memory over-
head low. We further reduce the memory overhead of the

Shard1

Shard2

Shard7

Shard8

Worker1

Worker2

Worker7

Worker8

Aggr

Sharded
access logs

Prediction
workers

Aggregated
top videos

Prediction Service

Model

Model

Streaming

Aggr

Figure 3: Chess video prediction service architecture.

example queue by only admitting a consistently sampled
30% of the videos to it—this proportionally reduces the
queue size, without causing any model overfitting.2 The
resulting example queue consumes ~6 GB of memory per
machine, or ~24 GB in total.
Each video has 12 stateless features and 7 stateful

features. These features, associated metadata, and current
popularity prediction add up to a storage overhead of ~250
bytes per video. Thus, all 80 million videos use ~20GB
RAM in total to maintain. This results in a total memory
overhead of ~44GB RAM from models and metadata, or
only ~11GB RAM per machine. In contrast, if SEISMIC
were used instead, the timestamp and watch time of each
past request would need to be stored to make predictions,
translating to 1.2MB per video on average and ~10TB
total memory usage.

6 Evaluation

Our evaluation seeks to answer three key questions for
Facebook’s video workload:

1. How does the prediction accuracy of Chess compare
to the heuristic used in production, the state of the art,
and a clairvoyant predictor?

2. What are the effects of our design decisions, such
as prediction target scaling, prediction horizon, and
example distance, on accuracy and resource usage?

3. How would adopting ChessVPS for production pro-
cessing decisions impact resource consumption and
watch time coverage?

6.1 Experimental Setup
Predictors Table 1 shows the predictors we compare
in this evaluation in three groups: baselines, increasing
subsets of Chess, and a clairvoyant predictor. Among the
baselines, we modified SEISMIC and Initial(1d) to suit
our application scenario better, and tuned their parameters

2This sampling turned out to be unnecessary, as even without it the
memory footprint per machine is still only 25GB.



Predictor Ranking of videos based on:
Initial(1d) [36] Watch time in the initial day after upload, or total watch time if less than a day old.
SEISMIC-CF [45] State of the art popularity prediction using a power-law kernel, with followers of each

viewer set to constant for our application.
Owner-Likes Like count of the video owner. This was recently used in production.
EDWT(4h) Exponentially decayed watch time with a four hour time window.
NN(EDWT) Neural network model using only EDWT features with time windows 1h, 4h, 16h, 64h.
Chess Neural network model with stateless features (e.g., owner likes) and stateful features (e.g.,

video views, video likes) made efficient using EDWTs.
Clairvoyant Total future watch time of each video. This is unattainable in practice.

Table 1: Popularity predictors evaluated on Facebook’s video workload in our evaluation.

to yield the best performance on our dataset. The original
SEISMIC algorithm needs the number of followers of
each retweeter for predicting tweet popularity, which is
unsuitable for video watch time prediction on Facebook
because a viewer might not share the video after watching
and directly influence its followers. Based on a parameter
sweep, we settled on a constant 1000 for this setting on our
workload, with the ensuing method called SEISMIC-CF—
as shown below, its performance remains competitive even
with this modification. Initial(1d) [36] originally uses the
number of requests—watch time in our case—of the entire
first day for predicting popularity, but for our application,
if the video is less than 1 day old we use its total watch
time to generate a prediction instead of waiting.
Comparing to baselines that represent the state of the

art—Initial(1d) and SEISMIC-CF—and a recent produc-
tion heuristic—Owner-Likes—enables us to quantify how
much Chess improves on the state of the art and would
improve production. Comparing increasing subsets of
Chess—EDWT(4h) and NN(EDWT)—allows us to quan-
tify the improvement from each addition to Chess. Com-
paring to a clairvoyant predictor allows us to quantify how
far Chess is from a perfect predictor.

Experimental Methods and Workloads We use three
experimental methods with progressively more realistic re-
sults and time-consuming experiments: single prediction,
simulation, and real-time sampled processing. The single
prediction method resembles that used by prior work on
popularity prediction [18, 45] and enables comparisons
with SEISMIC. The simulation method enables us to run
many experiments in a reasonable time frame and we
validate its results using real-time sampled processing.

Workloads. Single prediction and simulation experi-
ments each use the same 35-day trace of video access
as their workload. The trace is comprised of full ac-
cess logs for a random sample of 1% of videos during 5
weeks. The workload for the real-time sampled processing
experiments was the full Facebook video workload.

Single prediction. The memory and computational
overhead of SEISMIC3 made it infeasible for us to run the
more realistic simulation (or real-time sampled processing)
experiments with it, so we designed the single prediction
method to enable evaluation against it. In this method
each predictor takes as input the historical information for
a video up to a time point and then issues predictions. The
predictions are then evaluated using the watch time of the
video in the 15 days immediately following the time point.

The input historical information and future watch time
of the videos are extracted from the trace as follows. First,
we select only the videos in the trace that are accessed on
one day at the midpoint of the trace. This limits the size of
the prediction to make the experiments feasible. Second,
we randomly pick a time point on that day for each video
to control for diurnal effects. Finally, we extract the trace
up to the time point for each video and the future watch
time in the 15 days following the time point.

Simulation. Our main evaluation method is simulation
of a video prediction service that runs hourly using our
35-day trace. In each simulation, we replay the whole
trace, train our prediction model continuously, and the
predictor ranks videos for re-encoding every hour. Once a
video is selected for re-encoding, it is recorded in a hash
table. The hash table is then queried for each request to see
whether the requested video has already been re-encoded
before. We use the initial 23 days of the trace to populate
the hash table, and report results on the last 12 days.
Real-time sampled processing. Our final evaluation

method is the most realistic and follows the description in
Section 5. Thewhole service operates on 4machines, each
with 20 2.8GHz cores and 32GB memory, and processes
access logs of all Facebook videos in real time. We
then write a client using results from ChessVPS to make
encoding decisions in 10 minute intervals. The whole
system was run for a week for warm up and we present
the results from the next day.

3The implementation of SEISMIC is ~200× slower than Chess’s
implementation. However, part of this slowdown stems from SEISMIC
being implemented in the R language [45].



4 8 16 32 64 128 256 5121024
Video length (sec)

1
4

16
64

256
1024

E
n
co

d
in

g
 C

P
U

 
 (

se
c)

medium

veryslow

Figure 4: The linear relationship between video length
and encoding CPU makes video length a reasonable
proxy for encoding CPU.

Metrics Our ideal metrics for evaluating predictors
would include the future watch time ratio of re-encoded
videos and the encoding overhead from doing additional
processing on them. Neither of these metrics is feasible for
us to collect, but we can gather reasonable approximations
of them nevertheless. In the prediction experiments, total
future watch time is impossible to collect because there is
always more future. Instead we track watch time within
a 15-day period because popularity of Facebook videos
typically stabilizes in one week (from Figure 2b). In
simulations and real-time processing, we keep track of the
watch time coverage of re-encoded videos in every hour,
and find the coverage ratio stabilizes within 5 days after
enough recently popular videos have been re-encoded, so
in simulations we have a 23 day warm-up period and report
the average coverage ratio in the next 12 days trace, while
in real-time processing we wait 1 week before reporting
results in the next day. Doing additional processing on all
videos is not feasible because it would require the use of a
fleet of machines much larger than the current processing
fleet. Instead we approximate processing overhead using
video length and by doing sampled processing.

Video length is a reasonable proxy for processing CPU.
We use video length as our overhead metric for single
prediction and simulation experiments because it is fast to
compute and a reasonable proxy for processing CPU usage.
To demonstrate it is a reasonable proxy we randomly sam-
pled 3000 videos uploaded to Facebook, bucket them by
log2 of their lengths, and show the 20th percentile, median,
and 80th percentile CPU usage for FFmpeg “medium” and
“veryslow” encodings in each bucket. While there is a
large variance in each bucket, the CPU usage is approx-
imately linear in the video length. Statistically this is a
strong linear relationship with R2 = 0.981 between length
and median CPU usage across the buckets. Based on
this observation, in both single prediction and simulation
experiments, we rank the videos with each method, and
re-encode the top videos until the total length exceeds a
threshold (representing a fixed CPU budget). We then
compute its ratio to total length of all videos, terming the
quantity “encoding length ratio”.
Sampled processing. We use measured CPU usage

from processing a sample of videos as our overhead

10-6 10-5 10-4 10-3 10-2 10-1 100

Encoding length ratio

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m

u
la

ti
v
e
 r

a
ti

o
 o

f 
 f

u
tu

re
 w

a
tc

h
 t

im
e

Clairvoyant

CHESS

NN(EDWT)

SEISMIC

EDWT(4h)

Initial(1d)

Owner Likes

Figure 5: Single prediction results shown by the cumu-
lative ratio of future watch time of the videos selected
by each predictor for a given encoding length ratio.

metric for the real-time sampled processing experiment.
For this experiment, a 0.5% random sample of the selected
videos for each predictor (≈ 3000 in total) are re-encoded
using QuickFire. At the same time, 5000 videos are
sampled from the video uploads that day and encoded
with FFmpeg “veryslow”. We then calculate the overhead
for encoding the selected videos using the measured
encoding time for these two sets: let U denote the average
FFmpeg “veryslow” encoding time of the sampled video
uploads, and Q the average QuickFire encoding time of
the videos selected by one method in the sample set,
with 95% confidence interval [Q−,Q+] (computed using
scikits-bootstrap [14]). If N is the total number of
videos selected by that method, and M the daily video
uploads to Facebook, then we estimate the CPU overhead
to be QN

UM , with confidence interval
[
Q−N
UM , Q

+N
UM

]
, which

helps us estimate the variance from sampled processing.

6.2 Single Prediction Experiments

The results of the single prediction experiment that enable
us to compare to SEISMIC are shown in Figure 5. The
results generally follow the intuition that predictors with
more information available to them will make better
predictions. For instance, Initial(1d) and Owner-Likes
each perform poorly because they use only a single scalar
value as their prediction. We highlight two results.

NN(EDWT) is competitive with SEISMIC-CF.
EDWT(4h) is a self-exciting process prediction method
inspired by SEISMIC with the primary difference being
the use of an exponentially decayed kernel that makes it
much more resource efficient. The gain in resource effi-
ciency, however, comes with a consistently lower coverage
ratio for EDWT(4h) than for SEISMIC-CF. For instance,
to achieve 80% coverage EDWT(4h) needs to select 2.9×
more minutes of video than SEISMIC-CF.

NN(EDWT) is a combination of four EDWTs in a neural
network model. It performs slightly worse (up to 6% lower
watch time coverage) than SEISMIC-CF when encoding
a very small fraction of videos (< 0.1%). When encoding
a more typical fraction of videos (> 0.1%), however,



10-4 10-3 10-2 10-1

Encoding length ratio

0

20

40

60

80

100
C

o
v
e
ra

g
e
 r

a
ti

o
 (

%
)

Clairvoyant-L

Clairvoyant

CHESS-L

CHESS

EDWT(4h)

Owner Likes

Initial(1d)

Figure 6: Simulation results shown by the watch time
coverage ratio of videos selected by each predictor for
a given encoding length ratio. Clairvoyant-L/Chess-
L denotes the corresponding algorithm with scores
normalized by video length.

it achieves similar or slightly higher performance than
SEISMIC-CF. Both of these methods are based solely
on past access patterns, which indicates our learning
framework is able to deliver comparable results to a
handcrafted algorithm even when only using features of
lesser quality and consuming fewer resources.

Chess provides higher accuracy. The full Chess pro-
vides the highest watch time coverage of all achievable
predictors we evaluated and is the closest to the clairvoyant
predictor. Its improvement over SEISMIC-CF is signif-
icant: it achieves 40% watch time coverage with 2.0×
fewer minutes of video, 60% coverage with 1.8× fewer
minutes, and 80% coverage with 1.6× fewer minutes.

6.3 Simulation Experiments
Weused simulation experiments to provide amore realistic
comparison to other predictors and to investigate the effects
of three design parameters: prediction target scaling,
prediction horizon, and example distance.

Chess provides higher accuracy. Figure 6 show the
watch time coverage of all predictors except SEISMIC-CF
which is excluded because of its high memory usage and
slow speed. The relative performance of different methods
are similar to the single prediction experiment (Figure 5),
with Chess and Chess-L outperforming other practical
methods, which validates those results. For instance, to
reach 80% coverage, Chess-L encodes 2× as many video-
minutes as Clairvoyant-L, while Owner-Likes encodes 8×.
The overall performance at lower encoding length ratios
(<10−3), however, improves for two reasons: (1) due to
the power-law distribution of popularity, the simulation
will include a larger number of the most popular videos
than the single prediction experiments that use a smaller
sample, (2) in simulations a video is likely re-encoded
shortly after gaining popularity, therefore covering more
watch time, whereas in the single prediction experiment
a random time point is picked to divide the past and
future. The second reason also explains why Owner-Likes
now outperforms Initial(1d) under many settings even

10-4 10-3 10-2 10-1

Encoding length ratio

0
2
4
6
8

10
12

¢
 c

o
v
e
ra

g
e
 (

%
)

Clairvoyant

CHESS

EDWT(4h)

Owner Likes

Initial(1d)

Figure 7: Improvement of coverage ratio through
score normalization by video length.

though it did worse in the single prediction experiments.
With Owner-Likes, videos are re-encoded at upload time,
and so the benefits of re-encoding start accumulating
immediately. In contrast, Initial(1d) always waits up to 1
day until a video is popular to select it and misses many
of its early views. For most settings, the benefit from
higher accuracy in Initial(1d) does not make up for the
early views it misses relative to Owner-Likes.
The coverage ratio of different results saturates and

converges to the same value when encoding length ratio
is above 7%, but because QuickFire takes 20× CPU. This
translates to 140% additional CPU usage, a big increase
to the already large fleet.

Score normalization by length improves accuracy.
Figure 7 shows the increase in coverage of each method
with and without score normalization by video length. We
find this technique consistently improves the performance
of all methods, with Chess seeing the biggest improve-
ment and Clairvoyant seeing the smallest, which reduces
the gap between the two.
Clairvoyant-L and Chess-L in Figure 6 show the two

corresponding methods with scores normalized by video
length. Clairvoyant-L achieves the highest coverage ratio
consistent with Section 3.1: 80%+ with 1% encoding
length ratio, and 70%+ with 0.1% encoding length ratio.
Chess-L delivers the best result among all the practical
methods, only 6%–8% lower than Clairvoyant-L.

Chess-L improves the coverage ratio of the production
baseline, Owner-Likes by 8%-30%with the same encoding
length ratio from 0.01%-2%. To achieve 80% coverage
ratio, Chess-L only needs to encode 0.9% of total video
length, while Owner-Likes needs 2.5%. The results are
especially favorable at the middle to lower end of the
encoding length ratio. We hope this result motivates
the design of new encoding algorithms that utilizes even
higher CPU usage to achieves even better compression
ratios. Even if this encodingmethod uses 100× the CPU of
FFmpeg, with Chess-L, 64% of the watch time can still be
served with only ~10% CPU overhead from re-encoding
0.1% of videos.

Increasing the prediction horizon has diminishing re-
turns and higher memory usage. Due to space limi-



10-4 10-3 10-2 10-1

Encoding length ratio

−20
−15
−10
−5

0
¢

 c
o
v
e
ra

g
e
 (

%
)

0

2h

8h

128h

(a) Example distance vs. relative coverage difference.

0 1/8 0.5 2 8 32 128
Example distance (h)

0
1
2
3
4
5

R
e
la

ti
v
e
 R

A
M

(b) Memory usage with different example distances.

Figure 8: Effects of example distance.

tations we only summarize the results from varying the
prediction horizon. We experiment with horizons of 1h,
1d, 2d, 4d, 6d, 8d, 12d, and inf. The coverage is lowest
when prediction horizon is as short as 1 hour. It then
improves as the prediction horizon increases until 6d, then
however, when the horizon is 8d and inf, the coverage
drops by 1%-2%. Because the training target of our model
is the watch time within the prediction horizon, a longer
horizon means a better approximation for total future
watch time and improves the result. However, when the
horizon is too long, the training examples evicted from the
queue were created a long time ago, and the stale training
data hurts the prediction accuracy.
Meanwhile, the memory usage of the queue grows

roughly linearly with the prediction horizon because ex-
amples within the horizon are held in the queue. As it
provides the highest coverage with modest memory usage
in ChessVPS, we choose 6d to be the default prediction
horizon in our evaluations.

A short example distance increases coverage and de-
creases memory usage. Example distance, the mini-
mum time distance between two examples of the same
video, is another knob controlling the trade-off between
coverage and system resource usage. We have run experi-
ments with values 0, 1

8h,
1
2 h, 2h, . . . , 128h, and show the

relative coverage compared to the default 2h in Figure 8a,
and the simulator’s relative memory usage in Figure 8b.
We have omitted some lines in the former for clarity but
describe the results below.
The memory usage of the queue drops monotonically

as the example distance D increases. When D = 2h, we
reduce memory by 5× compared to D = 0 (not using the
heuristic) because most examples from the popular videos
never enter the queue. Interestingly, the coverage ratio
increases a little at the same time because the examples

10 20 30 40 50 60

CPU overhead (%)

30
40
50
60
70
80
90

C
o
v
e
ra

g
e
 (

%
)

0.5233.5
4

2K10K
50K

150K
500K

CHESS-L

Owner likes

Figure 9: Projected impact of Chess-L compared to
Owner-Likes. Encoding score thresholds are anno-
tated for each data point.

skipped are all “duplicates” of the most popular videos;
removing them has little effects on training set diversity
while making the model less biased towards those videos.
This improves the overall performance similar to the effects
of logarithmic scaling. If D further increases, memory
usage continues to drop, though at the expense of the
much lower coverage ratio, up to ~15% at 128h. Under
such a setting, most examples from even the moderately
popular videos are filtered out, and the model fails to
deliver accurate predictions. Based on these results we
have picked 2h as our default example distance.

6.4 Real-time Sampled Processing

We validate our algorithm and implementation by de-
ploying ChessVPS and running it in real-time with the
production access logs. Although the real-world encod-
ing logic is complex and our service is not used by the
production encoding pipeline yet, we have implemented a
“pseudo client” that queries the service every 10 minutes
and issues encoding decisions based on the prediction
scores. This way we can monitor the coverage and en-
coding statistics in real time, and verify its projected
impact more realistically. In simulations we ranked the
videos every hour and encoded them until the total video
lengths reach a threshold, but to more closely resemble
the production heuristic here, which re-encodes videos
whose owners have more than 10K likes, we also issue
re-encoding decisions for videos with prediction scores ex-
ceeding a threshold. In the following discussionChess(α)
means Chess with score threshold α, and similarly for
Owner-Likes(β).
Figure 9 shows the real-time sampled processing re-

sults. Chess-L(3) achieves ~80% coverage ratio as Owner-
Likes(10K), while reducing the re-encoding CPU over-
head from 54% to 17%. At slightly lower CPU usage,
Chess-L(2) improves the coverage of Owner-Likes(10K)
from 75.7% to 84.4%. The improvement of Chess-L is
greater at lower CPU overhead settings. For example,
Owner-Likes(500K) delivers 37% coverage with 6% CPU
overhead, whereas Chess-L(4) achieves 66.7% coverage
with 4.5% CPU overhead. This is favorable for limited
computing budgets, or if we want to apply even more



computing intensive encoding methods or have more en-
coded versions. The relative performance between the
two methods concords with the simulation results shown
in Figure 6; the minute differences stem from a changing
workload and the logic for different encoding thresholds.

7 Related Work

Ourwork explores building a scalable and accurate popular
video prediction service, with applications on re-encoding
for improving streaming quality. In this section we discuss
related work on popularity prediction, video quality of
experience (QoE) optimization, and caching, which we
draw inspiration from for this study.

Popularity Prediction In recent years, the popularity
prediction of online content has attracted intense research
attention. Simple heuristics like counting requests in
the first few hours/days [36], or followers of the owner
are fast but inaccurate. Meanwhile, various methods
have been proposed for modeling Twitter/Facebook re-
sharing [10, 9, 44]. They usually maximize accuracy,
rely on more features and are memory/computation inten-
sive, e.g., requiring to store and scan multiple features of
each retweet/sharing when making every prediction. Our
method is designed for both accuracy and efficiency, and
delivers accurate, real-time prediction for all Facebook
videos with a small hardware footprint.

Self-exciting processes have been used for modeling
earthquakes [20], YouTube video accesses [13], and Twit-
ter resharing [45]. These methods use variants of power-
law kernels and thus store and process all past requests.
Instead, we use an exponential kernel to cut per-video
memory/computation overhead to O(1). Exponentially
decayed metrics are used in other contexts [12, 21]; our
contribution is using them for self-exciting processes and
appling them to popularity prediction. Furthermore, we
are the first to combinemultiple exponentially-decayed ker-
nels in a learning framework, which allows us to match the
accuracy of a power-law kernel while remaining resource
efficient, thus obtaining the best of both worlds.

Video QoE Optimization As videos gain increasing
importance in people’s online activities, research on im-
proving video streaming QoE has flourished. Many of
them focus on the delivery path, e.g., selecting the best
bit-rate per chunk in ABR for efficiency, stability and
fairness [23, 24, 25, 42], and building a control plane for
video delivery [17, 28, 30]. On the upload and encoding
path, video codecs have evolved towards using higher
computation in exchange for higher compression, from
MPEG-2 [19] to the now widely adopted H.264 [34], and
gradually moving to the next generation codecs such as
VP9 [31] and H.265 [35]. In addition, QuickFire [1, 41]
and Netflix per-title encoding [4] try to improve com-

pression of existing codecs by finding the best encoding
configuration based on video content as well as resolution.
We explore another dimension in video encoding based on
feedback from delivery. By applying more processing to
popular videos, we optimize the overall trade-off between
encoding CPU and streaming QoE.

Caching We find the video re-encoding problem also
bears some interesting similarities to caching. By locating
hot data in a small but fast storage, caching saves access
latency and bandwidth [37]. Meanwhile, by spending
more CPU on the popular videos, re-encoding improves
the video streaming quality at given network conditions.
Many caching algorithms have been designed to ex-

ploit different characteristics of request patterns, includ-
ing recency (LRU [26]), frequency (LFU [29]), or both
(SLRU [27], MQ [46]). The exponentially decayed kernel
used as a building block in Chess combines both recency
and frequency, and the trade-off is tuned through the time
window parameter. Similar to length normalization, size-
aware caching [8, 11] also favors smaller items so more
can be cached in limited space, improving object hit-ratio.

8 Conclusion

Facebook serves billions of videos views every day and
new videos are uploaded at a rapid rate. With limited
CPU resources, it is challenging to identify which of
these videos would most benefit from re-encoding with
computing intensive methods like QuickFire that enhance
the viewing experience.
We have described an efficient video popularity pre-

diction service that has the Chess algorithm at its core.
Chess achieves scalability by summarizing past access
patterns with a constant number of values, and it achieves
efficiency by combining the past access patterns and other
features in a continuously updated neural network model.
Our evaluation show that compared to a recent production
heuristic, Chess reduces encoding CPU required by 3× to
cover 80% of user watch time with QuickFire.

While the focus of this paper has been popularity predic-
tion for the Facebook video workload, we conjecture that
our ChessVPS approach would generalize to efficiently
predict popularity in other settings.

Acknowledgments We are grateful to our shepherd
Vishakha Gupta-Cledat, the anonymous reviewers of the
ATC program committee, Siddhartha Sen, Haoyu Zhang,
Theano Stavrinos, and Aqib Nisar for their extensive
comments that substantially improved this work. We
are also grateful to Sergiy Bilobrov, Minchuan Chen,
Maksim Khadkevich, and other Facebook engineers for
their discussion on this problem. Our work is supported
by Facebook, NSF CAREER award #1553579, and a
Princeton University fellowship.



References

[1] QuickFire technology explained @Scale.
https://www.facebook.com/atscaleevents/
videos/1682906415315789.

[2] Facebook Community Update. https:
//www.facebook.com/photo.php?fbid=
10102457977071041.

[3] Facebook’s Streaming Video Engine @Scale Talk.
https://www.facebook.com/atscaleevents/
videos/1741710496102047/.

[4] A. Aaron, Z. Li, M. Manohara, J. De Cock,
and D. Ronca. Per-Title Encode Optimiza-
tion. http://techblog.netflix.com/2015/
12/per-title-encode-optimization.html.

[5] D. Beaver, S. Kumar, H. C. Li, J. Sobel, P. Vajgel,
et al. Finding a needle in haystack: Facebook’s photo
storage. In USENIX OSDI, 2010.

[6] C. M. Bishop. Pattern recognition. Machine Learn-
ing, 128, 2006.

[7] N. Bronson, Z. Amsden, G. Cabrera, P. Chakka,
P. Dimov, H. Ding, J. Ferris, A. Giardullo, S. Kulka-
rni, H. C. Li, et al. Tao: Facebook’s distributed data
store for the social graph. In USENIX ATC, 2013.

[8] P. Cao and S. Irani. Cost-aware www proxy caching
algorithms. In USITS, 1997.

[9] G. H. Chen, S. Nikolov, and D. Shah. A latent source
model for nonparametric time series classification.
In ACM NIPS, 2013.

[10] J. Cheng, L. Adamic, P. A. Dow, J. M. Kleinberg,
and J. Leskovec. Can cascades be predicted? In
ACM WWW, 2014.

[11] L. Cherkasova. Improving WWW proxies perfor-
mance with greedy-dual-size-frequency caching pol-
icy. Hewlett-Packard Laboratories, 1998.

[12] G. Cormode, F. Korn, and S. Tirthapura. Exponen-
tially decayed aggregates on data streams. In IEEE
ICDE, 2008.

[13] R. Crane and D. Sornette. Robust dynamic classes
revealed by measuring the response function of a
social system. PNAS, 2008.

[14] C. Evans. scikits-bootstrap. https://github.
com/cgevans/scikits-bootstrap.

[15] Facebook. Facebok Scribe. https://github.
com/facebook/scribe/wiki.

[16] FFmpeg. The FFmpeg project. http://ffmpeg.
org.

[17] A. Ganjam, F. Siddiqui, J. Zhan, X. Liu, I. Stoica,
J. Jiang, V. Sekar, and H. Zhang. C3: Internet-scale
control plane for video quality optimization. In
USENIX NSDI, 2015.

[18] G. Gürsun, M. Crovella, and I. Matta. Describing
and forecasting video access patterns. In INFOCOM,
2011 Proceedings IEEE, pages 16–20. IEEE, 2011.

[19] B. G. Haskell, A. Puri, and A. N. Netravali. Digi-
tal Video: An Introduction to MPEG-2. Springer
Science & Business Media, 1997.

[20] A. G. Hawkes. Spectra of some self-exciting and
mutually exciting point processes. Biometrika, 1971.

[21] J.-W. Hsieh, T.-W. Kuo, and L.-P. Chang. Efficient
identification of hot data for flash memory storage
systems. ACM TOS, 2006.

[22] Q. Huang, K. Birman, R. van Renesse, W. Lloyd,
S. Kumar, and H. C. Li. An analysis of facebook
photo caching. In ACM SOSP, 2013.

[23] T.-Y. Huang, R. Johari, N. McKeown, M. Trunnell,
and M. Watson. A buffer-based approach to rate
adaptation: Evidence from a large video streaming
service. ACMSIGCOMMComputer Communication
Review, 2015.

[24] J. Jiang, V. Sekar, and H. Zhang. Improving fairness,
efficiency, and stability in HTTP-based adaptive
video streaming with festive. In ACM CoNEXT,
2012.

[25] J. Jiang, V. Sekar, H. Milner, D. Shepherd, I. Stoica,
and H. Zhang. CFA: A practical prediction system
for video QoE optimization. InUSENIX NSDI, 2016.

[26] T. Johnson and D. Shasha. 2Q: A Low Overhead
High Performance Buffer Management Replacement
Algorithm. 1994.

[27] R. Karedla, J. S. Love, and B. G. Wherry. Caching
strategies to improve disk system performance. IEEE
Computer, 1994.

[28] X. Liu, F. Dobrian, H. Milner, J. Jiang, V. Sekar,
I. Stoica, and H. Zhang. A case for a coordinated
internet video control plane. In ACM SIGCOMM,
2012.

[29] S. Maffeis. Cache management algorithms for flexi-
ble filesystems. ACM SIGMETRICS Performance
Evaluation Review, 1993.

[30] M. K. Mukerjee, D. Naylor, J. Jiang, D. Han, S. Se-
shan, and H. Zhang. Practical, real-time centralized
control for cdn-based live video delivery. ACM SIG-
COMM Computer Communication Review, 2015.

[31] D. Mukherjee, J. Bankoski, A. Grange, J. Han,
J. Koleszar, P. Wilkins, Y. Xu, and R. Bultje. The
latest open-source video codec VP9-an overview and
preliminary results. In IEEE PCS, 2013.

[32] S. Muralidhar, W. Lloyd, S. Roy, C. Hill, E. Lin,
W. Liu, S. Pan, S. Shankar, V. Sivakumar, L. Tang,
et al. F4: Facebook’s warm blob storage system. In
USENIX OSDI, 2014.

https://www.facebook.com/atscaleevents/videos/1682906415315789
https://www.facebook.com/atscaleevents/videos/1682906415315789
https://www.facebook.com/photo.php?fbid=10102457977071041
https://www.facebook.com/photo.php?fbid=10102457977071041
https://www.facebook.com/photo.php?fbid=10102457977071041
https://www.facebook.com/atscaleevents/videos/1741710496102047/
https://www.facebook.com/atscaleevents/videos/1741710496102047/
http://techblog.netflix.com/2015/12/per-title-encode-optimization.html
http://techblog.netflix.com/2015/12/per-title-encode-optimization.html
https://github.com/cgevans/scikits-bootstrap
https://github.com/cgevans/scikits-bootstrap
https://github.com/facebook/scribe/wiki
https://github.com/facebook/scribe/wiki
http://ffmpeg.org
http://ffmpeg.org


[33] I. Sodagar. The MPEG-DASH standard for multime-
dia streaming over the internet. IEEE MultiMedia,
2011.

[34] G. J. Sullivan, P. N. Topiwala, and A. Luthra. The h.
264/avc advanced video coding standard: Overview
and introduction to the fidelity range extensions. In
SPIE Optics + Photonics, 2004.

[35] G. J. Sullivan, J.-R. Ohm, W.-J. Han, and T. Wie-
gand. Overview of the high efficiency video coding
(HEVC) standard. IEEE CSVT, 2012.

[36] G. Szabo and B. A. Huberman. Predicting the
popularity of online content. CACM, 2010.

[37] A. S. Tanenbaum and A. S. Woodhull. Operating
systems: design and implementation, volume 2.
Prentice-Hall Englewood Cliffs, NJ, 1987.

[38] L. Tang, Q. Huang, W. Lloyd, S. Kumar, and K. Li.
RIPQ: advanced photo caching on flash for facebook.
In USENIX FAST, 2015.

[39] T. C. Thang, Q.-D. Ho, J. W. Kang, and A. T. Pham.
Adaptive streaming of audiovisual content using
MPEG DASH. IEEE Transactions on Consumer
Electronics, 2012.

[40] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and
A. Luthra. Overview of the h. 264/avc video coding
standard. IEEE Transactions on circuits and systems
for video technology, 2003.

[41] WIRED. Facebook acquires QuickFire Net-
works. https://www.facebook.com/wired/
posts/10152676478868721.

[42] X. Yin, A. Jindal, V. Sekar, and B. Sinopoli. A
control-theoretic approach for dynamic adaptive
video streaming over HTTP. ACM SIGCOMM Com-
puter Communication Review, 2015.

[43] T. Zaman, E. B. Fox, E. T. Bradlow, et al. A Bayesian
approach for predicting the popularity of tweets. The
Annals of Applied Statistics, 2014.

[44] T. R. Zaman, R. Herbrich, J. Van Gael, and D. Stern.
Predicting information spreading in Twitter. In ACM
NIPS Workshop on computational social science
and the wisdom of crowds, 2010.

[45] Q. Zhao, M. A. Erdogdu, H. Y. He, A. Rajaraman,
and J. Leskovec. SEISMIC: A self-exciting point
process model for predicting tweet popularity. In
ACM SIGKDD, 2015.

[46] Y. Zhou, J. Philbin, and K. Li. The multi-queue
replacement algorithm for second level buffer caches.
In USENIX ATC, 2001.

https://www.facebook.com/wired/posts/10152676478868721
https://www.facebook.com/wired/posts/10152676478868721

	Introduction
	Background
	Motivation and Challenges
	High Skew Motivates Prediction
	Prediction is Challenging

	The Chess Prediction Algorithm
	Utilizing Past Access Patterns with EDWT
	Combining Efficient Features in a Framework
	Efficient Online Model Update

	The Implementation of ChessVPS
	Evaluation
	Experimental Setup
	Single Prediction Experiments
	Simulation Experiments
	Real-time Sampled Processing

	Related Work
	Conclusion

