
www.usenix.org AU G U S T 20 13 VO L . 3 8 N O. 4 41

SYSTEMSA Short Primer on Causal Consistency
W Y A T T L L O Y D , M I C H A E L J . F R E E D M A N , M I C H A E L K A M I N S K Y ,
A N D D A V I D G . A N D E R S E N

Wyatt Lloyd is a Postdoctoral
Researcher at Facebook and will
begin a position as an Assistant
Professor at the University of
Southern California in 2014.

His research interests include the distributed
systems and networking problems that underlie
the architecture of large-scale Web sites, cloud
computing, and big data. He received his Ph.D.
from Princeton University in 2013 and his BS
from Penn State University in 2007, both in
Computer Science.  Wyatt.Lloyd@gmail.com

The growing prevalence of geo-distributed services that span mul-
tiple geographically separate locations has triggered a resurgence of
research on consistency for distributed storage. The CAP theorem

and other earlier results prove that no distributed storage system can simul-
taneously provide all desirable properties—e.g., CAP shows this for strong
Consistency, Availability, and Partition tolerance—and some must be sacri-
ficed to enable others. In this article, we suggest causal consistency repre-
sents an excellent point in this tradeoff space; it is compatible with strong
performance and liveness properties while being far easier to reason about
than the previously-settled-for choice: “eventual” consistency.

Geo-distributed services are growing in popularity because they can survive datacenter fail-
ures and because they move services closer to end users, which lowers page load time and in
turn drives up user engagement. For example, companies such as Facebook distribute their
service across datacenters on the West Coast, East Coast, and Europe. The recent work in
this space includes systems such as PNUTS [2], Walter [11], Gemini [6], Spanner [3], MDCC
[5], and Bolt-on [1], as well as our own work on COPS [7] and Eiger [8].

So why does the increasing number of geo-distributed services make consistency a hot
topic? Because there is a fundamental, unavoidable tradeoff between having guaranteed
low-latency access (which we define as not having to send packets back-and-forth across
the country) and making sure that every client sees a single ordering of all operations in the
system (strong consistency) [7]. Guaranteed low latency is important because it keeps page
load times low. Consistency is important because it makes systems easier to program. In our
first work on this subject, COPS, we coined a term for low-latency-favoring systems: ALPS
(“Availability, Low-latency, Partition tolerance, and Scalability”). This tradeoff is unavoid-
able as readers familiar with the famous CAP theorem might remember. Here’s an example:

Consider concurrent writes and reads at two different datacenters. If you want both the
write to have low latency and the read to have low latency, then you must satisfy them faster
than the information can propagate to the other datacenter. In some circumstances, for
example, a client might write data to the West Coast datacenter just before another client
reads that object from the East Coast datacenter. The East Coast read will return stale infor-
mation (i.e., it won’t reflect that write that actually happened first) because, although the
write completed on the West Coast, it hasn’t propagated to the other datacenter. You could
avoid this behavior and make the write take longer (wait for it to propagate to the East Coast)
or the read take longer (fetch the data from the West Coast), but you cannot have both.

This tradeoff is pretty well understood, and is one of the several reasons behind the increas-
ing prevalence of “eventual consistency,” popularized by Amazon’s Dynamo [4]. The other, of
course, is availability: in this example, if the two datacenters cannot communicate, at least
one of them must stop processing requests. Eventual consistency allows the datacenters to
each return local results, rapidly, even if the other one is down. What it sacrifices, of course,
is consistency: queries at different datacenters may see different results, in different order.

Michael J. Freedman is
an Associate Professor
of Computer Science at
Princeton University, with a
research focus on distributed

systems, networking, and security.
Recent honors include a Presidential Early
Career Award (PECASE), as well as early
investigator awards through the NSF and
ONR, a Sloan Fellowship, and DARPA CSSG
membership.  mfreed@cs.princeton.edu

Michael Kaminsky is a Senior
Research Scientist at Intel
Labs and is an adjunct faculty
member of the Computer
Science Department at

Carnegie Mellon University. He is part of the
Intel Science and Technology Center for Cloud
Computing (ISTC-CC), based in Pittsburgh,
PA. His research interests include distributed
systems, operating systems, and networking.
michael.e.kaminsky@intel.com

David G. Andersen is an Asso-
ciate Professor of Computer
Science at Carnegie Mellon
University. He completed his
S.M. and Ph.D. degrees at MIT,

and holds BS degrees in Biology and Computer
Science from the University of Utah. In 1995,
he co-founded an Internet Service Provider in
Salt Lake City, Utah.  dga@cs.cmu.edu

42  AU G U S T 20 13 VO L . 3 8 N O. 4 www.usenix.org

SYSTEMS
A Short Primer on Causal Consistency

This is where causality comes in: you can provide something
better than “eventual” consistency without sacrificing availabil-
ity or low latency. That something is causal consistency, and it
has been proved that no stronger form of consistency exists that
can also guarantee low latency [9].

What Is Causal Consistency?
Causal consistency means that two events that are “causally”
related (or potentially so) must appear in the same order. In other
words, if action B occurred after action A (either because a user
did A and then B, or because a different user saw A and then did
B), then B must appear after A. As a concrete example, consider
replying to a snarky comment on someone’s Facebook post: your
reply should be causally ordered after the snark. And, indeed,
this is exactly what causally consistent replication can provide:
your reply will never appear to have happened before the snark
that triggered it.

Causal Consistency Is Good for Users
Causal consistency improves user experience because with
it actions appear to everyone in the correct order. A common
scenario where causality is important, but often isn’t provided, is
comments on social network posts, which sometimes appear out
of order.

Consider this stream of posts:

Oh no! My cat just jumped out the window.
[a few minutes later] Whew, the catnip plant broke her fall.
[reply from a friend] I love when that happens to cats!

It looks a little weird if what shows up on someone else’s screen is:

Oh no! My cat just jumped out the window.
[reply from a friend] I love when that happens to cats!

There are even better examples, widely used, when talking about
access control:

[Removes boss from friends list]
[Posts]: “My boss is the worst, I need a new job!”

If these two actions occur in the wrong order, then my post will
not have been hidden from my boss as intended. Bad news bears.

Causal Consistency Is Good for Programmers
A stronger consistency model restricts the potential orderings of
events that can show up at a remote datacenter. This simplifies
the reasoning required of a programmer. Imagine two causally
related events: Creating a new photo album and then uploading
an image to it. If those events are replicated out-of-order, your
code might have to try to cope with the idea of an image being
uploaded to a nonexistent photo album. Or crash, because you
never expected it to happen. In contrast, in a causally consis-
tent system, you might never see the photo upload (or it could be

delayed), but it will always occur after the creation of the album.
This is the big win from causal consistency for programmers:
They do not need to reason about out-of-order actions. Easier
code, happier programmers.

What Are the Limitations of Causal Consistency?
Causal consistency is achievable with low latency, and it benefits
users and programmers. But it has three drawbacks that practi-
tioners should be aware of.

Drawback #1: Can only capture causality it sees. Actions
that take place outside of the system are not seen and, unfortu-
nately, not ordered by the system. A common example of this is a
phone call: if I do action A, call my friend on another continent to
tell her about A, and then she does action B, we will not capture
the causal link between A and B.

Drawback #2: Cannot always enforce global invariants.
Each datacenter in a causally consistent system is optimistic in
that writes return once they are accepted in the local datacen-
ter. This optimism makes it impossible to allow writes at every
datacenter and guarantees global invariants, such as enforcing
the rule that bank accounts never drop below 0 dollars.

True global invariants, however, may be rarer than you think.
E-commerce is an often cited example, but online stores often
handle stock that falls below 0 by issuing back orders for any
sales that cannot be filled immediately. And readers familiar
with the recent string of concurrent withdrawal attacks where
bandits withdrew $40 million from 12 accounts [10] will recog-
nize that even banks rarely enforce global invariants.

Drawback #3: Programmers must reason about concurrent
writes. The optimism inherent in causality (when accepting
writes at all datacenters) that prevents causal systems from
enforcing global invariants also allows there to be concurrent
writes to the same data. For instance, a person on the West
Coast could update a data item while a person on the East Coast
is simultaneously updating that same data item. What should a
datacenter do when it has both updates? One common strategy—
called the last-writer-wins rule or Thomas’s write rule—is to
pick one update arbitrarily and have it overwrite the other. This
simple procedure is often sufficient: e.g., a social network user
can only have one hometown.

There are situations, however, where a more complicated proce-
dure is necessary. For instance, consider a friend request on the
East Coast being accepted concurrently with a friend request on
the West Coast. Each accepted friend request should increase
the count of a user’s friends by one (for a total of +2), but if we use
the last-writer-wins rule, one update will overwrite the other
(for only +1). Instead, we need programmers to write special
functions to merge the concurrent updates together (that add the
+1s together).

www.usenix.org AU G U S T 20 13 VO L . 3 8 N O. 4 43

SYSTEMS
A Short Primer on Causal Consistency

Reasoning about concurrent writes is the main difficulty with
using causal consistency for programmers. Specifically, they
must ask “are overwrite semantics sufficient?” and if they are
not, they must write special functions that preserve the seman-
tics they need.

References
[1] Peter Bailis, Ali Ghodsi, Joseph M. Hellerstein, Ion Stoica,
“Bolt-on Causal Consistency,” SIGMOD, June 2013.

[2] Brian F. Cooper, Raghu Ramakrishnan, Utkarsh Srivastava,
Adam Silberstein, Philip Bohannon, Hans-Arno Jacobsen, Nick
Puz, Daniel Weaver, and Ramana Yerneni, “PNUTS: Yahoo!’s
Hosted Data Serving Platform,” VLDB, August 2008.

[3] James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew
Fikes, Christopher Frost, J.J. Furman, Sanjay Ghemawat,
Andrey Gubarev, Christopher Heiser, Peter Hochschild, Wilson
Hsieh, Sebastian Kanthak, Eugene Kogan, Hongyi Li, Alexan-
der Lloyd, Sergey Melnik, David Mwaura, David Nagle, Sean
Quinlan, Rajesh Rao, Lindsay Rolig, Yasushi Saito, Michal
Szymaniak, Christopher Taylor, Ruth Wang, and Dale Wood-
ford, “Spanner: Google’s Globally Distributed Database,” OSDI,
October 2012.

[4] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A.
Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall, and W.
Vogels, “Dynamo: Amazon’s Highly Available Key-Value Store,”
SOSP, October 2007.

[5] Tim Kraska, Gene Pang, Michael J. Franklin, Samuel Mad-
den, and Alan Fekete, “MDCC: Multi-Datacenter Consistency,”
EuroSys, April 2013.

[6] Cheng Li, Daniel Porto, Allen Clement, Johannes Gehrke,
Nuno Preguiça, and Rodrigo Rodrigues, “Making Geo-Repli-
cated Systems Fast as Possible, Consistent When Necessary,”
OSDI, October 2012.

[7] Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and
David G. Andersen, “Don’t Settle for Eventual: Scalable Causal
Consistency for Wide-Area Storage with COPS,” SOSP, October
2011.

[8] Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and
David G. Andersen, “Stronger Semantics for Low-Latency Geo-
Replicated Storage,” NSDI, April 2013.

[9] Prince Mahajan, Lorenzo Alvisi, and Mike Dahlin, “Consis-
tency, Availability, and Convergence,” Technical Report TR-11-
22, University of Texas at Austin, Department of Computer
Science, 2011.

[10] Marc Santora, “In Hours, Thieves Took $45 Million in
A.T.M. Scheme,” New York Times, May 5, 2013.

[11] Yair Sovran, Russell Power, Marcos K. Aguilera, and Jin-
yang Li, “Transactional Storage for Geo-Replicated Systems,”
SOSP, October 2011.

Conclusion
Causal consistency is a better-than-eventual consistency model
that still allows guaranteed low latency operations. It captures
the causal relationships between operations and ensures that
everyone sees operations in that order. This makes Web sites
more intuitive for users, because their actions appear, and are
applied, in the order they intended. Causal consistency also
makes programming simpler by eliminating the need for pro-
grammers to reason about out-of-order operations.

