
Social Networking with Frientegrity:
Privacy and Integrity with an Untrusted Provider

Ariel J. Feldman, Aaron Blankstein, Michael J. Freedman, and Edward W. Felten

Princeton University

Abstract
Today’s social networking services require users to trust

the service provider with the confidentiality and integrity
of their data. But with their history of data leaks and
privacy controversies, these services are not always de-
serving of this trust. Indeed, a malicious provider could
not only violate users’ privacy, it could equivocate and
show different users divergent views of the system’s state.
Such misbehavior can lead to numerous harms including
surreptitious censorship.

In light of these threats, this paper presents Frientegrity,
a framework for social networking applications that can be
realized with an untrusted service provider. In Frientegrity,
a provider observes only encrypted data and cannot devi-
ate from correct execution without being detected. Prior
secure social networking systems have either been decen-
tralized, sacrificing the availability and convenience of a
centralized provider, or have focused almost entirely on
users’ privacy while ignoring the threat of equivocation.
On the other hand, existing systems that are robust to
equivocation do not scale to the needs social networking
applications in which users may have hundreds of friends,
and in which users are mainly interested the latest updates,
not in the thousands that may have come before.

To address these challenges, we present a novel method
for detecting provider equivocation in which clients col-
laborate to verify correctness. In addition, we introduce an
access control mechanism that offers efficient revocation
and scales logarithmically with the number of friends. We
present a prototype implementation demonstrating that
Frientegrity provides latency and throughput that meet the
needs of a realistic workload.

1. Introduction
Popular social networking sites have hundreds of millions
of active users [20]. They have enabled new forms of
communication, organization, and information sharing; or,
as Facebook’s prospectus claims, they exist “to make the
world more open and connected” [60]. But by now, it is
widely understood that these benefits come at the cost of
having to trust these centralized services with the privacy
of one’s social interactions. The history of these services
is rife with unplanned data disclosures (e.g., [22, 40]), and

these services’ centralization of information makes them
attractive targets for attack by malicious insiders and out-
siders. In addition, social networking sites face pressure
from government agencies world-wide to release infor-
mation on demand, often without search warrants [24].
Finally and perhaps worst of all, the behavior of service
providers themselves is a source of users’ privacy con-
cerns. Providers have repeatedly changed their privacy
policies and default privacy settings, and have made public
information that their users thought was private [46, 47].

Less recognized, however, is the extent to which users
trust social networking sites with the integrity of their data,
and the harm that a malicious or compromised provider
could do by violating it. Prior work on secure social
networking has focused primarily on privacy and largely
neglected integrity, or at most employed digital signatures
on users’ individual messages [5, 53, 54, 56]. But a ma-
licious provider could be more insidious. For example,
bloggers have claimed that Sina Weibo, a Chinese mi-
croblogging site, tried to disguise its censorship of a user’s
posts by hiding them from the user’s followers but still
showing them to the user [51]. This behavior is an exam-
ple of server equivocation [34, 39], in which a malicious
service presents different clients with divergent views of
the system state. We argue that to truly protect users’ data,
a secure social networking service should defend against
this sort of attack.

To address the security concerns surrounding social net-
working, numerous prior works (e.g., [5, 17, 56]) have
proposed decentralized designs in which the social net-
working service is provided not by a centralized provider,
but by a collection of federated nodes. Each node could
either be a service provider of a user’s choice or the user’s
own machine or those of her friends. We believe that
decentralization is the wrong, or at least an insufficient,
approach, however, because it leaves the user with an un-
enviable dilemma: either sacrifice availability, reliability,
and convenience by storing her data on her own machine,
or entrust her data to one of several providers that she
probably does not know or trust any more than she would
a centralized provider.

In light of these problems, we present Frientegrity, a
framework for building social networking services that
protects the privacy and integrity of users’ data from a

1

potentially malicious provider, while preserving the avail-
ability, reliability, and usability benefits of centralization.
Frientegrity supports familiar social networking features
such as “walls,” “news feeds,” comment threads, and pho-
tos, as well as common access control mechanisms such
as “friends,” “friends-of-friends,” and “followers.” But
in Frientegrity, the provider’s servers only see encrypted
data, and clients can collaborate to detect server equivo-
cation and other forms of misbehavior such as failing to
properly enforce access control. In this way, Frientegrity
bases its confidentiality and integrity guarantees on the
security of users’ cryptographic keys, rather than on the
service provider’s good intentions or the correctness of its
complex server code. Frientegrity remains highly scalable
while providing these properties by spreading system state
across many shared-nothing servers [52].

To defend against server equivocation, Frientegrity en-
forces a property called fork* consistency [33]. A fork*-
consistent system ensures that if the provider is honest,
clients see a strongly-consistent (linearizable [27]) order-
ing of updates to an object (e.g., a wall or comment thread).
But if a malicious provider presents a pair of clients with
divergent views of the object, then the provider must pre-
vent the clients from ever seeing each other’s subsequent
updates lest they identify the provider as faulty.

Prior systems have employed variants of fork* consis-
tency to implement network file systems [33, 34], key-
value stores [7, 38, 50], and group collaboration sys-
tems [21] with untrusted servers. But these systems as-
sumed that the number of users would be small or that
clients would be connected to the servers most of the time.
As a result, to enforce fork* consistency, they presumed
that it would be reasonable for clients to perform work
that is linear in either the number of users or the number
of updates ever submitted to the system. But these as-
sumptions do not hold in social networking applications
in which users have hundreds of friends, clients are Web
browsers or mobile devices that connect only intermit-
tently, and users typically are interested only in the most
recent updates, not in the thousands that may have come
before.

To accommodate these unique scalability challenges,
we present a novel method of enforcing fork* consistency
in which clients collaborate to detect server equivocation.
This mechanism allows each client to do only a small
portion of the work required to verify correctness, yet is
robust to collusion between a misbehaving provider and
as many as f malicious users, where f is a predetermined
security parameter per object.

Access control is another area where social network-
ing presents new scalability problems. A user may have
hundreds of friends and tens of thousands of friends-of-
friends (FoFs) [19]. Yet, among prior social networking
systems that employ encryption for access control (e.g.,

[5, 9, 37]), many require work that is linear in the number
of friends, if not FoFs, to revoke a friend’s access (i.e.,
to “un-friend”). Frientegrity, on the other hand, supports
fast revocation of friends and FoFs, and also gives clients
a means to efficiently verify that the provider has only
allowed writes from authorized users. It does so through a
novel combination of persistent authenticated dictionar-
ies [12] and key graphs [59].

To evaluate the scalability of Frientegrity, we imple-
mented a prototype that simulates a Facebook-like service.
We demonstrate that Frientegrity is capable of scaling with
reasonable performance by testing this prototype using
workloads with tens of thousands of updates per object
and access control lists containing hundreds of users.

Roadmap In §2, we introduce Frientegrity’s goals and
the threat model against which it operates. §3 presents an
overview of Frientegrity’s architecture using the task of
fetching a “news feed” as an example. §4 delves into the
details of Frientegrity’s data structures and protocols for
collaboratively enforcing fork* consistency on an object,
establishing dependencies between objects, and enforcing
access control. §5 discusses additional issues for untrusted
social networks such as friend discovery and group admin-
istration. We describe our prototype implementation in
§6 and then evaluate its performance and scalability in §7.
We discuss related work in §8 and then conclude.

2. System Model
In Frientegrity, the service provider runs a set of servers
that store objects, each of which corresponds to a famil-
iar social networking construct such as a Facebook-like
“wall”, a comment thread, or a photo or album. Clients
submit updates to these objects, called operations, on be-
half of their users. Each operation is encrypted under a
key known only to a set of authorized users, such as a
particular user’s friends, and not to the provider. Thus,
the role of the provider’s servers is limited to storing op-
erations, assigning them a canonical order, and returning
them to clients upon request, as well as ensuring that only
authorized clients can write to each object. To confirm
that servers are fulfilling this role faithfully, clients collab-
orate to verify their output. Whenever a client performs a
read, it checks whether the response is consistent with the
responses that other clients received.

2.1 Goals
Frientegrity should satisfy the following properties:

Broadly applicable: If Frientegrity is to be adopted, it
must support the features of popular social networks such
as Facebook-like walls or Twitter-like feeds. It must also
support both the symmetric “friend” and “friend-of-friend”
relationships of services like Facebook and the asymmetric
“follower” relationships of services like Twitter.

2

Keeps data confidential: Because the provider is un-
trusted, clients must encrypt their operations before sub-
mitting them to the provider’s servers. Frientegrity must
ensure that all and only the clients of authorized users can
obtain the necessary encryption keys.

Detects misbehavior: Even without access to objects’
plaintexts, a malicious provider could still try to forge
or alter clients’ operations. It could also equivocate and
show different clients inconsistent views of the objects.
Moreover, malicious users could collude with the provider
to deceive other users or could attempt to falsely accuse
the provider of being malicious. Frientegrity must guar-
antee that as long as the number of malicious users with
permission to modify an object is below a predetermined
threshold, clients will be able to detect such misbehavior.

Efficient: Frientegrity should be sufficiently scalable to
be used in practice. In particular, a client that is only in-
terested in the most recent updates to an object should not
have to download and check the object in its entirety just
so that the it can perform the necessary verification. Fur-
thermore, because social networking users routinely have
hundreds of friends and tens of thousands of friends-of-
friends [19], access control list changes must be performed
in time that is better than linear in the number of users.

2.2 Detecting Server Equivocation
To prevent a malicious provider from forging or modi-
fying clients’ operations without detection, Frientegrity
clients digitally sign all their operations with their users’
private keys. But as we have discussed, signatures are not
sufficient for correctness, as a misbehaving provider could
still equivocate about the history of operations.

To mitigate this threat, Frientegrity employs fork* con-
sistency [33].1 In fork*-consistent systems, clients share
information about their individual views of the history by
embedding it in every operation they send. As a result, if
clients to whom the provider has equivocated ever com-
municate, they will discover the provider’s misbehavior.
The provider can still fork the clients into disjoint groups
and only tell each client about operations by others in its
group, but then it can never again show operations from
one group to the members of another without risking de-
tection. Furthermore, if clients are occasionally able to
exchange views of the history out-of-band, even a provider
which forks the clients will not be able to cheat for long.

1Fork* consistency is a weaker variant of an earlier model
called fork consistency [39]. They differ in that under fork con-
sistency, a pair of clients only needs to exchange one message
to detect server equivocation, whereas under fork* consistency,
they may need to exchange two. Frientegrity enforces fork*
consistency because it permits a one-round protocol to submit
operations, rather than two. It also ensures that a crashed client
cannot prevent the system from making progress.

Ideally, to mitigate the threat of provider equivocation,
Frientegrity would treat all of the operations performed on
all of the objects in the system as a single, unified history
and enforce fork* consistency on that history. Such a
design would require establishing a total order on all of the
operations in the system regardless of the objects to which
they belonged. In so doing, it would create unnecessary
dependencies between unrelated objects, such as between
the “walls” of two users on opposite sides of the social
graph. It would then be harder to store objects on different
servers without resorting to either expensive agreement
protocols (e.g., Paxos [31]) or using a single serialization
point for all operations.

Instead, like many scale-out services, objects in Frien-
tegrity are spread out across many servers; these objects
may be indexed either through a directory service [1, 23]
or through hashing [15, 30]. The provider handles each
object independently and only orders operations with re-
spect to the other operations in the same object. Clients,
in turn, exchange their views of each object to which they
have access separately. Thus, for efficiency, Frientegrity
only enforces fork* consistency on a per-object basis.

There are situations, however, when it is necessary to
make an exception to this rule and specify that an opera-
tion in one object happened after an operation in another.
Frientegrity allows clients to detect provider equivocation
about the order of such a pair of operations by supply-
ing a mechanism for explicitly entangling the histories of
multiple objects (see §3.4).

2.3 Threat Model
Provider: We assume that the provider may be actively
malicious. It may not only attempt to violate the confiden-
tiality of users’ social interactions, but also may attempt to
compromise their integrity through either equivocation or
by directly tampering with objects, operations, or access
control lists (ACLs).

Although Frientegrity makes provider misbehavior de-
tectable, it does not prevent a malicious provider from
denying service, either by blocking all of a client’s updates
or by erasing the encrypted data it stores. To mitigate this
threat, clients could replicate their encrypted operations
on servers run by alternate providers. Furthermore, if
provider equivocation creates inconsistencies in the sys-
tem’s state, clients can resolve them using fork-recovery
techniques, such as those employed by SPORC [21]. We
argue, however, that because Frientegrity allows provider
misbehavior to be detected quickly, providers will have
an incentive to avoid misbehaving out of fear of legal
repercussions or damage to their reputations.

The provider does not have access to the contents of
objects or the contents of the individual operations that
clients upload, because they are encrypted under keys that
it does not know. In addition, because users’ names are

3

also encrypted, the provider can only identify users by
pseudonyms, such as the hash of the public keys they
use within the system. Nevertheless, we do not seek to
hide social relationships: we assume that the provider
can learn the entire pseudonymous social graph, including
who is friends with whom and who interacts with whom,
by analyzing the interconnections between objects and
by keeping track of which pseudonyms appear in which
objects, (e.g., by using social network deanonymization
techniques [4, 43]).

Preventing the provider from learning the social graph
is likely to be impossible in practice because even if
users used a new pseudonym for every new operation,
the provider would still be able to infer a great deal from
the size and timing of their operations. After all, in most
social networking applications, the first thing a user does
when she signs in is check a “news feed” which is com-
prised of her friends’ most recent updates. In order to con-
struct the news feed, she must query each of her friend’s
feed objects in succession, and in so doing reveal to the
provider which feed objects are related.

Users and Clients: We assume that users may also be
malicious and may use the clients they control to attempt
to read and modify objects to which they do not have
access. In addition, malicious users may collude with
the provider or with other users to exceed their privileges
or to deceive honest users. They may also attempt to
falsely accuse the provider of misbehavior. Finally, we
assume that some clients may be controlled by Sybil users,
created by the provider to subvert the clients’ defenses
against server equivocation.

Frientegrity’s security is based on the assumption, how-
ever, that among the users which have access to a given
object, no more than some constant f will be malicious
(Byzantine faulty). We believe that this assumption is rea-
sonable because a user can only access an object if she has
been explicitly invited by another user with administrator
privileges for the object (e.g., Alice can only access Bob’s
wall if he explicitly adds her as a friend). As we describe
in §4.1, this assumption allows clients to collaborate to
detect provider misbehavior. If a client sees that at least
f + 1 other users have vouched for the provider’s output,
the client can assume that it is correct.

Client code: We assume the presence of a code authen-
tication infrastructure that can verify that the application
code run by clients is genuine. This mechanism might rely
on code signing or on HTTPS connections to a trusted
server (different from the untrusted service provider used
as part of Frientegrity’s protocols).

3. System Overview

As discussed above, to ensure that the provider is behav-
ing correctly, Frientegrity requires clients to verify the

…!

Provider!
Srv 1! Srv 2! Srv 3! Srv n!

Bob’s wall!

Bob’s ACL history!

Bob’s ACL!

Alice!

depends!

readObject(‘Bob’s wall’)!

2!

3!

1!

Decrypt! Verify!

Figure 1: A client fetches a news feed in Frientegrity by
reading the latest posts from her friends’ walls, as well as
information to verify, authenticate, and decrypt the posts.

output that they receive from the provider’s servers. As
a result, whenever clients retrieve the latest updates to an
object, the provider’s response must include enough infor-
mation to make such verification possible. In addition, the
provider must furnish the key material that allows autho-
rized clients with the appropriate private keys to decrypt
the latest operations. Thus, when designing Frientegrity’s
protocols and data structures, our central aim was to en-
sure that clients could perform the necessary verification
and obtain the required keys efficiently.

To explain these mechanisms, we use the example of
a user Alice who wants to fetch her “news feed” and
describes the steps that her client takes on her behalf. For
simplicity, in this and subsequent examples throughout
the paper, we often speak of users, such as Alice, when we
really mean to refer to the clients acting on their behalf.

3.1 Example: Fetching a News Feed
Alice’s news feed consists of the most recent updates
to the sources to which she is subscribed. In Facebook,
for example, this typically corresponds to the most recent
posts to her friends’ “walls”, whereas in Twitter, it is made
up of the most recent tweets from the users she follows.
At a high level, Frientegrity performs the following steps
when Alice’s fetches her news feed, as shown in Figure 1.

1. For each of Alice’s friends, Alice’s sends a readOb-
ject RPC to the server containing the friend’s wall
object.

2. In response to a readObject RPC for a friend Bob,
a well-behaved server returns the most recent opera-
tions in Bob’s wall, as well as sufficient information
and key material for Alice to verify and decrypt them.

3. Upon receiving the operations from Bob’s wall, Al-
ice performs a series of verification steps aimed at
detecting server misbehavior. Then, using her pri-
vate key, she decrypts the key material and uses it to
decrypt the operations. Finally, when she has veri-
fied and decrypted the recent wall posts from all her

4

friends, she combines them and optionally filters and
prioritizes them according to a client-side policy.

For Alice to verify the response to each readObject, she
must be able to check the following properties efficiently:

1. The provider has not equivocated about the wall’s
contents: The provider must return enough of the
wall object to allow Alice to guarantee that history
of the operations performed on the wall is fork* con-
sistent.

2. Every operation was created by an authorized user:
The provider must prove that each operation from the
wall that it returns was created by a user who was
authorized to do so at the time that the operation was
submitted.

3. The provider has not equivocated about the set of
authorized users: Alice must be able to verify that
the provider did not add, drop, or reorder users’ mod-
ifications to the access control list that applies to the
wall object.

4. The ACL is not outdated: Alice must be able to
ensure that the provider did not roll back the ACL
to an earlier version in order to trick the client into
accepting updates from a revoked user.

The remainder of this section summarizes the mecha-
nisms with which Frientegrity enforces these properties.

3.2 Enforcing Fork* Consistency
Clients defend against provider equivocation about the
contents of Bob’s wall or any other object by comparing
their views of the object’s history, thereby enforcing fork*
consistency. Many prior systems, such as BFT2F [33] and
SPORC [21], enforced fork* consistency by having each
client maintain a linear hash chain over the operations that
it has seen. Every new operation that it submits to the
server includes the most recent hash. On receiving an op-
eration created by another client, a client in such systems
checks whether the history hash included in the operation
matches the client’s own hash chain computation. If it
does not, the client knows that the server has equivocated.

The problem with this approach is that it requires each
client to perform work that is linear in the size of the
entire history of operations. This requirement is ill suited
to social networks because an object such as Bob’s wall
might contain thousands of operations dating back years.
If Alice is only interested in Bob’s most recent updates,
as is typically the case, she should not have to download
and check the entire history just to be able to detect server
equivocation. This is especially true considering that when
fetching a news feed, Alice must read all of her friends’
walls, and not just Bob’s.

To address these problems, Frientegrity clients verify
an object’s history collaboratively, so that no single client

needs to examine it in its entirety. Frientegrity’s collab-
orative verification scheme allows each client to do only
a small portion of the work, yet is robust to collusion
between a misbehaving provider and as many as f mali-
cious users. When f is small relative to the number of
users who have written to an object, each client will most
likely only have to do work that is logarithmic, rather than
linear, in the size of the history (as our evaluation demon-
strates in §7.5). We present Frientegrity’s collaborative
verification algorithm in §4.1.

3.3 Making Access Control Verifiable
A user Bob’s profile is comprised of multiple objects in ad-
dition to his wall, such as photos and comment threads. To
allow Bob to efficiently specify the users allowed to access
all of these objects (i.e., his friends), Frientegrity stores
Bob’s friend list all in one place as a separate ACL. ACLs
store users’ pseudonyms in the clear, and every operation
is labeled with the pseudonym of its creator. As a result,
a well-behaved provider can reject operations that were
submitted by unauthorized users. But because the provider
is untrusted, when Alice reads Bob’s wall, the provider
must prove that it enforced access control correctly on
every operation it returns. Thus, Frientegrity’s ACL data
structure must allow the server to construct efficiently-
checkable proofs that the creator of each operation was
indeed authorized by Bob.

Frientegrity also uses the ACL to store the key material
with which authorized users can decrypt the operations on
Bob’s wall and encrypt new ones. Consequently, ACLs
must be designed to allow clients with the appropriate pri-
vate keys to efficiently retrieve the necessary key material.
Moreover, because social network ACLs may be large,
ACL modifications and any associated rekeying must be
efficient.

To support both efficiently-checkable membership
proofs and efficient rekeying, Frientegrity ACLs are imple-
mented as a novel combination of persistent authenticated
dictionaries [12] and key graphs [59]. Whereas most
prior social networking systems that employ encryption
required work linear in the number of friends to revoke a
user’s access, all of Frientegrity’s ACL operations run in
logarithmic time.

Even if it convinces Alice that every operation came
from someone who was authorized by Bob at some point,
the provider must still prove that it did not equivocate
about the history of changes Bob made to his ACL. To ad-
dress this problem, Frientegrity maintains an ACL history
object, in which each operation corresponds to a change
to the ACL and which Alice must check for fork* con-
sistency, just like with Bob’s wall. Frientegrity’s ACL
data structure and how it interacts with ACL histories are
further explained in §4.3.

5

3.4 Preventing ACL Rollbacks
Even without equivocating about the contents of either
Bob’s wall or his ACL, a malicious provider could still
give Alice an outdated ACL in order to trick her into ac-
cepting operations from a revoked user. To mitigate this
threat, operations in Bob’s wall are annotated with depen-
dencies on Bob’s ACL history (the red dotted arrow in
Figure 1). A dependency indicates that a particular oper-
ation in one object happened after a particular operation
in another object. Thus, by including a dependency in an
operation that it posts to Bob’s wall, a client forces the
provider to show anyone who later reads the operation
an ACL that is at least as new as the one that the client
observed when it created the operation. In §4.2, we ex-
plain the implementation of dependencies and describe
additional situations where they can be used.

4. System Design
Clients interact with Frientegrity primarily by reading and
writing objects and ACLs via the following four RPCs: 2

• readObject(objectID, k, [otherOps]). Returns the k
most recent operations in object objectID, and option-
ally, a set of additional earlier operations from the
object (otherOps). But as we explain in the previous
section, the provider must also return enough opera-
tions from the object to allow the client to verify that
the provider has not equivocated and proofs from the
ACL that show that every operation came from an
authorized user. In addition, it must return key ma-
terial from the ACL that allows the client to decrypt
the object.
• writeObject(objectID, op). Submits the new operation

op to object objectID. Every new operation is signed
by the user that created it. To allow clients to enforce
fork* consistency, it also includes a compact repre-
sentation of the submitting client’s view of object’s
state. (This implies that the client must have read the
object at least once before submitting an update.)
• readACL(aclID, [userToAdd] [userToRemove]). Re-

turns ACL aclID and its corresponding ACL history
object. As an optimization, the client can optionally
specify in advance that it intends to add or remove
particular users from the ACL so that the provider
only has to return the portion of the ACL that the
client needs to change.
• writeACL(aclID, aclUpdate). Submits an update to

ACL aclID. Only administrator users (e.g., the owner
of a Facebook-like profile) can modify the ACL. The
objects to which the ACL applies are encrypted under
a key that is shared only among currently authorized

2For brevity, we omit RPCs for creating new objects and
ACLs and for adding new users to the system.

users. Thus, to add a user, the client must update the
ACL so that it includes the encryption of this shared
key under the new user’s public key. To remove a
user, the ACL must be updated with a new shared key
encrypted such that all remaining users can retrieve
it. (See §4.3.3.)

The remainder of this section describes how Frientegrity
makes these RPCs possible. It discusses the algorithms
and data structures underlying object verification (§4.1),
dependencies between objects (§4.2), and verifiable access
control §4.3).

4.1 Making Objects Verifiable
4.1.1 Object Representation

Frientegrity’s object representation must allow clients to
compare their views of the object’s history without requir-
ing any of them to have the entire history. Representing
an object as a simple list of operations would be insuffi-
cient because it is impossible to compute the hash of a list
without having all of the elements going back to the first
one. As a result, objects in Frientegrity are represented as
history trees.

A history tree, first introduced by Crosby et al. [11] for
tamper-evident logging, is essentially a versioned Merkle
tree [41]. Like an ordinary Merkle tree, data (in this case,
operations) are stored in the leaves, each internal node
stores the hash of the subtree below it, and the hash of the
root covers the tree’s entire contents. But unlike a static
Merkle tree, a history tree allows new leaves (operations)
to be added to the right side of the tree. When that occurs,
a new version of the tree is created and the hashes of the
internal nodes are recomputed accordingly.

This design has two features that are crucial for Frien-
tegrity. First, as with a Merkle tree, subtrees containing
unneeded operations can be omitted and replaced by a
stub containing the subtree’s hash. This property allows
a Frientegrity client which has only downloaded a subset
of an object’s operations to still be able to compute the
current history hash. Second, if one has a version j history
tree, it is possible to compute what the root hash would
have been as of version i < j by pretending that operations
i + 1 through j do not exist, and by then recomputing the
hashes of the internal nodes.

Frientegrity uses history trees as follows. Upon receiv-
ing a new operation via a writeObject RPC, the server
hosting the object adds it to the object’s history tree, up-
dates the root hash, and then digitally signs the hash. This
server-signed hash is called a server commitment and is
signed to prevent a malicious client from later falsely ac-
cusing the server of cheating.

When Alice reads an object of version i by calling read-
Object, the server responds with a pruned copy of the
object’s history tree containing only a subset of the opera-

6

0! 9! 10! 12! 13! 14! 15!

Figure 2: A pruned object history that a provider might
send to a client. Numbered leaves represent operations and
filled boxes represent stubs of omitted subtrees. The solid
arrow represents the last operation’s prevCommitments.
Dashed arrows represent other prevCommitments.

tions, along with Ci, the server commitment to version i
of the object. If Alice then creates a new operation, she
shares her view of the history with others by embedding
Ci in the operation’s prevCommitment field. If Bob later
reads the object, which by then has version j ≥ i, he can
compare the object he receives with what Alice saw by
first computing what the root hash would have been at
version i from his perspective and then comparing it to the
prevCommitment of Alice’s operation. If his computed
value C′i does not equal Ci, then he knows the server has
equivocated.

4.1.2 Verifying an Object Collaboratively

But how many operations’ prevCommitments does a client
need to check in order to be confident that the provider
has not misbehaved? Clearly, if the client checks every
operation all the way back to the object’s creation, then
using a history tree provides no advantage over using a
hash chain. Consequently, in Frientegrity, each client only
verifies a suffix of the history and trusts others to check
the rest. If we assume that there are at most f malicious
users with write access to an object, then as long as at
least f + 1 users have vouched for a prefix of the history,
subsequent clients do not need to examine it.

To achieve this goal, every client executes the following
algorithm to verify an object that it has fetched. In re-
sponse to a readObject RPC, the provider returns a pruned
object history tree that includes all of the operations the
client requested along with any additional ones that the
client will need to check in order to verify the object.
Because the provider knows the client’s verification algo-
rithm, it can determine a priori which operations the client
will need. For simplicity, the algorithm below assumes
that only one user needs to vouch for a prefix of the history
in order for it to be considered trustworthy (i.e., f = 0).
We relax this assumption in the next section.

1. Suppose that Alice fetches an object, and the provider
replies with the pruned object shown in Figure 2. Be-
cause the object has version 15, the provider also
sends Alice its commitment C15. On receiving the
object, she checks the server’s signature on C15, re-
computes the hashes of the internal nodes, and then
verifies that her computed root hash C′15 matches C15.
Every operation she receives is signed by the user
that created it, and so she verifies these signatures as
well.

2. Alice checks the prevCommitment of the last opera-
tion (op15), which in this case is C12.3 To do so, Alice
computes what the root hash would have been if op12
were the last operation and compares her computed
value to C12. (She must have op12 to do this.)

3. Alice checks the prevCommitment of every operation
between op12 and op15 in the same way.

4. Frientegrity identifies every object by its first opera-
tion.4 Thus, to make sure that the provider did not
give her the wrong object, Alice checks that op0 has
the value she expects.

4.1.3 Correctness of Object Verification

The algorithm above aims to ensure that at least one hon-
est user has checked the contents and prevCommitment
of every operation in the history. To see how it achieves
this goal, suppose that op15 in the example was created
by the honest user Bob. Then, C12 must have been the
most recent server commitment that Bob saw at the time
he submitted the operation. More importantly, however,
because Bob is honest, Alice can assume that he would
have never submitted the operation unless he had already
verified the entire history up to op12. As a result, when
Alice verifies the object, she only needs to check the con-
tents and prevCommitments of the operations after op12.
But how was Bob convinced that the history is correct up
to op12? He was persuaded the same way Alice was. If the
author of op12 was honest, and op12’s prevCommitment
was Ci, then Bob only needed to examine the operations
from opi+1 to op12. Thus, by induction, as long as writers
are honest, every operation is checked even though no
single user examines the whole history.

Of course in the preceding argument, if any user col-
ludes with a malicious provider, then the chain of verifica-
tions going back to the beginning of the history is broken.
To mitigate this threat, Frientegrity clients can tolerate up
to f malicious users by looking back in the history until
they find a point for which at least f + 1 different users

3An operation’s prevCommitment need not refer to the imme-
diately preceding version. This could occur, for example, if the
operation had been submitted concurrently with other operations.

4Specifically, an objectID is equal to the hash of its first
operation, which contains a client-supplied random value, along
with the provider’s name and a provider-supplied random value.

7

have vouched. Thus, in the example, if f = 2 and op13,
op14, and op15 were each created by a different user, then
Alice can rely on assurances from others about the history
up to op9, but must check the following operations herself.

Frientegrity allows the application to use a different
value of f for each type of object, and the appropriate f
value depends on the context. For example, for an object
representing a Twitter-like feed with a single trusted writer,
setting f = 0 might be reasonable. By contrast, an object
representing the wall of a large group with many writers
might warrant a larger f value.

The choice of f impacts performance: as f increases,
so does the number of operations that every client must
verify. But when f is low relative to the number of writers,
verifying an object requires logarithmic work in the history
size due to the structure of history trees. We evaluate this
security vs. performance trade-off empirically in §7.5.

4.2 Dependencies Between Objects
Recall that, for scalability, the provider only orders the
operations submitted to an object with respect to other op-
erations in the same object. As a result, Frientegrity only
enforces fork* consistency on the history of operations
within each object, but does not ordinarily provide any
guarantees about the order of operations across different
objects. When the order of operations spanning multi-
ple objects is relevant, however, the objects’ histories can
be entangled through dependencies. A dependency is an
assertion of the form 〈 srcObj, srcVers, dstObj, dstVers,
dstCommitment 〉, indicating that the operation with ver-
sion srcVers in srcObj happened after operation dstVers
in dstObj, and that the server commitment to dstVers of
dstObj was dstCommitment.

Dependencies are established by authorized clients in
accordance with a policy specified by the application.
When a client submits an operation to srcObj, it can create
a dependency on dstObj by annotating the operation with
the triple 〈 dstObj, dstVers, dstCommitment 〉. If another
client subsequently reads the operation, the dependency
serves as evidence that dstObj must have at least been
at version dstVers at the time the operation was created,
and the provider will be unable to trick the client into
accepting an older version of dstObj.

As described in §3.4, Frientegrity uses dependencies
to prevent a malicious provider from tricking clients into
accepting outdated ACLs. Whenever a client submits a
new operation to an object, it includes a dependency on
the most recent version of the applicable ACL history that
it has seen.5 Dependencies have other uses, however. For
example, in a Twitter-like social network, every retweet
could be annotated with a dependency on the original

5The annotation can be omitted if the prior operation in the
object points to the same ACL history version.

tweet to which it refers. In that case, a provider that
wished to suppress the original tweet would not only have
to suppress all subsequent tweets from the original user
(because Frientegrity enforces fork* consistency on the
user’s feed), it would also have to suppress all subsequent
tweets from all the users who retweeted it.

Frientegrity uses Merkle aggregation [11] to implement
dependencies efficiently. This feature of history trees al-
lows the attributes of the leaf nodes to be aggregated up
to the root, where they can be queried efficiently. In Frien-
tegrity, the root of every object’s history tree is annotated
with a list of the other objects that the object depends
on, along with those objects’ most recent versions and
server commitments. To prevent tampering, each node’s
annotations are included in its hash, so that incorrectly
aggregated values will result in an incorrect root hash.

4.3 Verifiable Access Control
4.3.1 Supporting Membership Proofs

When handling a readObject RPC, Frientegrity ACLs
must enable the provider to construct proofs that demon-
strate to a client that every returned operation was created
by an authorized user. But to truly demonstrate such autho-
rization, such a proof must not only show that a user was
present in the ACL at some point in time, it must show
that the user was in the ACL at the time the operation
was created (i.e., in the version of the ACL on which the
operation depends). As a result, an ACL must support
queries not only on the current version of its state, but
on previous versions as well. The abstract data type that
supports both membership proofs and queries on previous
versions is known as a persistent authenticated dictionary
(PAD). Thus, in Frientegrity, ACLs are PADs.

To realize the PAD abstract data type, an ACL is im-
plemented as a binary search tree in which every node
stores both an entry for a user and the hash of the subtree
below it.6 To prove that an entry u exists, it suffices for the
provider to return a pruned tree containing the search path
from the root of the tree to u, in which unneeded subtrees
in the path are replaced by stubs containing the subtrees’
hashes. If the root hash of the search path matches the
previously-known root hash of the full tree, a client can
be convinced that u is in the ACL.

To support queries on previous versions of their states,
ACLs are copy-on-write. When an administrator updates
the ACL before calling writeACL, it does not modify any

6Our ACL construction expands on a PAD design from
Crosby et al. [12] that is based on a treap [2]. A treap is a
randomized search tree that is a cross between a tree and a
heap.In addition to a key-value pair, every node has a priority,
and the treap orders the nodes both according to their keys and
according to the heap property. If nodes’ priorities are chosen
pseudorandomly, the tree will be balanced in expectation.

8

Ek_left(k)!
Ek_right(k)!

Ek_Alice_pub(k)!

Alicepseudonym! RW!
User: Priv:

parent

left child right child
Figure 3: ACLs are organized as trees for logarithmic access
time. Figure illustrates Alice’s entry in Bob’s ACL.

nodes directly. Instead, the administrator copies each node
that needs to be changed, applies the update to the copy,
and then copies all of its parents up to the root. As a result,
there is a distinct root for every version of the ACL, and
querying a previous version entails beginning a search at
the appropriate root.

4.3.2 Preventing Equivocation about ACLs

To authenticate the ACL, it is not enough for an administra-
tor to simply sign the root hash of every version, because
a malicious provider could still equivocate about the his-
tory of ACL updates. To mitigate this threat, Frientegrity
maintains a separate ACL history object that stores a log
of updates to the ACL. An ACL history resembles an or-
dinary object, and clients check it for fork* consistency
in the same way, but the operations that it contains are
special ModifyUserOps. Each version of the ACL has a
corresponding ModifyUserOp that stores the root hash as
of that version and is signed by an administrator.

In summary, proving that the posts on a user Bob’s
wall were created by authorized users requires three steps.
First, for each post, the provider must prove that the post’s
creator was in Bob’s ACL by demonstrating a search path
in the appropriate version of the ACL. Second, for each
applicable version of Bob’s ACL, the provider must pro-
vide a corresponding ModifyUserOp in Bob’s ACL history
that was signed by Bob. Finally, the provider must supply
enough of the ACL history to allow clients to check it for
fork* consistency, as described in §4.1.2.

4.3.3 Efficient Key Management and Revocation

Like many prior systems designed for untrusted servers
(e.g., [5, 21, 25, 37]), Frientegrity protects the confiden-
tiality of users’ data by encrypting it under a key that is
shared only among currently authorized users. When any
user’s access is revoked, this shared key must be changed.
Unfortunately, in most of these prior systems, changing
the key entails picking a new key and encrypting it under
the public key of the remaining users, thereby making
revocation expensive.

To make revocation more efficient, Frientegrity orga-
nizes keys into key graphs [59]. But rather than maintain-

ing a separate data structure for keys, Frientegrity stores
keys in same ACL tree that is used for membership proofs.
As shown in Figure 3, each node in Bob’s ACL not only
contains the pseudonym and privileges of an authorized
user, such as Alice, it is also assigned a random AES key
k. k is, in turn, encrypted under the keys of its left and
right children, kle f t and kright, and under Alice’s public key
kAlice pub.7 This structure allows any user in Bob’s ACL to
follow a chain of decryptions up to the root of the tree and
obtain the root key kBob root. As a result, kBob root is shared
among all of Bob’s friends and can be used to encrypt
operations that only they can access. Because the ACL
tree is balanced in expectation, the expected number of
decryptions required to obtain kBob root is logarithmic in
the number of authorized users. More significantly, this
structure makes revoking a user’s access take logarithmic
time as well. When a node is removed, only the keys along
the path from the node to the root need to be changed and
reencrypted.

4.3.4 Supporting Friends-of-Friends

Many social networking services, including Facebook,
allow users to share content with an audience that includes
not only their friends, but also their “friends-of-friends”
(FoFs). Frientegrity could be extended naively to support
sharing with FoFs by having Bob maintain a separate key
tree, where each node corresponded to a FoF instead of a
friend. This approach is undesirable, however, as the size
of the resulting tree would be quadratic in the number of
authorized users. Instead, Frientegrity stores a second FoF
key k′ in each node of Bob’s ACL. Similar to the friend
key k, k′ is encrypted under the FoF keys of the node’s
left and right children, k′le f t and k′right. But instead of being
encrypted under kAlice pub, k′ is encrypted under kAlice root,
the root key of Alice’s ACL. Thus, any of Alice’s friends
can decrypt k′ and ultimately obtain k′Bob root, which can
be used to encrypt content for any of Bob’s FoFs.

The FoF design above assumes, however, that friend
relationships are symmetric: Bob must be in Alice’s
ACL in order to obtain kAlice root. To support asymmet-
ric “follower-of-follower” relationships, such as Google+

“Extended Circles,” Frientegrity could be extended so
that a user Alice maintains a separate public-private
key pair 〈kAlice FoF pub, kAlice FoF priv〉. Alice could then
give kAlice FoF priv to her followers by encrypting it under
kAlice root, and she could give kAlice FoF pub to Bob. Finally,
Bob could encrypt k′ under kAlice FoF pub.

7To lower the cost of changing k, k is actually encrypted un-
der an AES key kuser which is, in turn, encrypted under kAlice pub.

9

5. Extensions

5.1 Discovering Friends
Frientegrity identifies users by pseudonyms, such as the
hashes of their public keys. But to enable users to discover
new friends, the system must allow them to learn other
users’ real names under certain circumstances. In Frien-
tegrity, we envision that the primary way a user would
discover new friends is by searching through the ACLs
of her existing friends for FoFs that she might want to
“friend” directly. To make this possible, users could en-
crypt their real names under the keys that they use to share
content with their FoFs. A user Alice’s client could then
periodically fetch and decrypt the real names of her FoFs
and recommend them to Alice as possible new friends. Al-
ice’s client could rank each FoF according to the number
of mutual friends that Alice and the FoF share by counting
the number of times that the FoF appears in an ACL of
one of Alice’s friends.

Frientegrity’s design prevents the provider from offering
site-wide search that would allow any user to locate any
other users by their real names. After all, if any user could
search for any other user by real name, then so could
Sybils acting on behalf of a malicious provider. We believe
that this limitation is unavoidable, however, because there
is an inherent trade-off between users’ privacy and the
effectiveness of site-wide search even in existing social
networking systems.8 Thus, a pair of users who do not
already share a mutual friend must discover each other, by
exchanging their public keys out-of-band.

5.2 Multiple Group Administrators
As we describe in §4.3, when a user Alice reads another
user Bob’s wall, she verifies every wall post by consult-
ing Bob’s ACL. She, in turn, verifies Bob’s ACL using
Bob’s ACL history, and then verifies each relevant Modi-
fyUserOp by checking for Bob’s signature. To support
features like Facebook Groups or Pages, however, Fri-
entegrity must be extended to enable multiple users to
modify a single ACL and to allow these administrators be
added and removed dynamically. But if the set of admin-
istrators can change, then, as with ordinary objects, a user
verifying the ACL history must have a way to determine
that every ModifyUserOp came from a user who was a
valid administrator at the time the operation was created.
One might think the solution to this problem is to have
another ACL and ACL history just to keep track of which
users are administrators at any given time. But this pro-

8For example, in 2009, Facebook chose to weaken users’
privacy by forcing them to make certain information public, such
as their genders, photos, and current cities. It adopted this policy,
which it later reversed, so that it would be easier for someone
searching for a particular user to distinguish between multiple
users with the same name [46].

posal merely shifts the problem to the question of who is
authorized to write to these data structures.

Instead, we propose the following design. Changes
to the set of administrators would be represented as spe-
cial ModifyAdminOp. Each ModifyAdminOp would be
included in the ACL history alongside the ModifyUserOp,
but would also have a pointer to the previous ModifyAd-
minOp. In this way, the ModifyAdminOp would be linked
together to form a separate admin history, and clients
would enforce fork* consistency on this history using
a linear hash chain in the manner of BFT2F [33] and
SPORC [21]. When a client verifies the ACL history,
it would download and check the entire admin history
thereby allowing it to determine whether a particular user
was an administrator when it modified the ACL history.
Although downloading an entire history is something that
we have otherwise avoided in Frientegrity, the cost of
doing so here likely is low: Even when the set of reg-
ular users changes frequently, the set of administrators
typically does not.

5.3 Dealing with Conflicts
When multiple clients submit operations concurrently, con-
flicts can occur. Because servers do not have access to
the operations’ plaintexts, Frientegrity delegates conflict
resolution to the clients, which can employ a number of
strategies, such as last-writer-wins, operational transfor-
mation [21], or custom merge procedures [55]. In practice,
however, many kinds of updates in social networking sys-
tems, such as individual wall posts, are append operations
that are inherently commutative, and thus require no spe-
cial conflict resolution.

5.4 Public Feeds with Many Followers
Well-known individuals and organizations often use their
feeds on online social networks to disseminate information
to the general public. These feeds are not confidential, but
they would still benefit from a social networking system
that protected their integrity. Such feeds pose scalability
challenges, however, because they can have as many as
tens of millions of followers.

Fortunately, Frientegrity can be readily adapted to sup-
port these feeds efficiently. Because the object correspond-
ing to such a feed does not need to be encrypted, its ACL
does not need to store encryption keys. The ACL is only
needed to verify that every operation in the object came
from an authorized writer. As a result, the size of the
object’s ACL need only be proportional to the number of
users with write access to the object, which is often only a
single user, rather than to the total number of followers.

Popular feeds would also not prevent applications from
using dependencies to represent retweets in the manner
described in §4.2. Suppose that Alice retweets a post from
the feed of a famous individual, such as Justin Bieber.

10

Then, in such a design, the application would establish
a dependency from Alice’s feed to Justin Bieber’s. But
because dependencies only modify the source object (in
this case Alice’s feed), they would not impose any ad-
ditional performance penalty on reads of Justin Bieber’s
feed. Thus, even if Justin Bieber’s posts are frequently
retweeted, Frientegrity could still serve his feed efficiently.

6. Implementation
To evaluate Frientegrity’s design, we implemented a pro-
totype that simulates a simplified Facebook-like service.
It consists of a server that hosts a set of user profiles and
clients that fetch, verify, and update them. Each user
profile is comprised of an object representing the user’s
“wall,” as well as an ACL and ACL history object repre-
senting the user’s list of friends. The wall object is made
up of operations, each of which contains an arbitrary byte
string, that have been submitted by the user or any of her
friends. The client acts on behalf of a user and can perform
RPCs on the server to read from and write to the walls of
the user or user’s friends, as well as to update the user’s
ACL. The client can simulate the work required to build
a Facebook-like “news feed” by fetching and verifying
the most recent updates to the walls of each of the user’s
friends in parallel.

Our prototype is implemented in approximately 4700
lines of Java code (per SLOCCount [58]) and uses the
protobuf-socket-rpc [16] library for network communica-
tion. To support the history trees contained in the wall and
ACL history objects, we use the reference implementation
provided by Crosby et al. [13].

Because Frientegrity requires every operation to be
signed by its author and every server commitment to be
signed by the provider, high signature throughput is a
priority. To that end, our prototype uses the Network Se-
curity Services for Java (JSS) library from Mozilla [42] to
perform 2048-bit RSA signatures because, unlike Java’s
default RSA implementation, it is written in native code
and offers significantly better performance. In addition,
rather than signing and verifying each operation or server
commitment individually, our prototype signs and verifies
them in batches using spliced signatures [10, 13]. In so do-
ing, we improve throughput by reducing the total number
of cryptographic operations at the cost of a small potential
increase in the latency of processing a single message.

7. Experimental Evaluation
Social networking applications place a high load on
servers, and they require reasonably low latency in the
face of objects containing tens of thousands of updates
and friend lists reaching into the hundreds and thousands.
This section examines how our Frientegrity prototype per-
forms and scales under these conditions.

0.01 .1 1 10 100
Rate (tweets/day)

0.01%
0.1%

1%
10%

100%

U
se

rC
C

D
F

Figure 4: Distribution of post rates for Twitter users. 1% of
users post at least 14 times a day, while 0.1% post at least 56
times a day.

All tests were performed on machines with dual 4-core
Xeon E5620 processors clocked at 2.40 GHz, with 11 GB
of RAM and gigabit network interfaces. Our evaluation
ran with Oracle Java 1.6.0.24 and used Mozilla’s JSS cryp-
tography library to perform SHA256 hashes and RSA
2048 signatures. All tests, unless otherwise stated, ran
with a single client machine issuing requests to a separate
server machine on the same local area network, and all
data is stored in memory. A more realistic deployment
over the wide-area would include higher network latencies
(typically an additional tens to low hundreds of millisec-
onds), as well as backend storage access times (typically
in low milliseconds in datacenters). These latencies are
common to any Web service, however, and so we omit any
such synthetic overhead in our experiments.

7.1 Single-object Read and Write Latency

To understand how large object histories may get in prac-
tice, we collected actual social network usage data from
Twitter by randomly selecting over 75,000 users with pub-
lic profiles. Figure 4 shows the distribution of post rates
for Twitter users. While the majority of users do not tweet
at all, the most active users post over 200 tweets per day,
leading to tens of thousands of posts per year.

To characterize the effect of history size on read and
write latency, we measured performance of these opera-
tions as the history size varies. For each read, the client
fetched an object containing the five most recent opera-
tions along with any other required to verify the object.
As shown in Figure 5, write latency was approximately
10 ms (as it includes both a server and client signature
in addition to hashing), while read latency was approxi-
mately 6 ms (as it includes a single signature verification
and hashing). The Figure’s table breaks down median
request latency to its contributing components. As ex-
pected, a majority of the time was spent on public-key
operations; a faster signature verification implementation
or algorithm would correspondingly increase performance.
While the latency here appears constant, independent of
the history size, the number of hash verifications actually
grows logarithmically with the history. This observed be-
havior arises because, at least up to histories of 25,000

11

0 5K 10K 15K 20K 25K
Object History Size

0

2

4

6

8

10

12

14
R

es
po

ns
e

L
at

en
cy

(m
s)

Write
Read

Read Server Data Fetches 0.45 ms 7.5%
Network and Data Serialization 1.06 ms 17.5%
Client Signature Verification 3.55 ms 58.8%
Other (incl. Client Decrypt, Hashing) 0.98 ms 16.3%

Total Latency 6.04 ms

Write Client Encryption 0.07 ms 0.7%
Client Signature 4.45 ms 41.7%
Network and Data Serialization 0.64 ms 6.0%
Server Signature 4.31 ms 40.4%
Other (incl. Hashing) 1.21 ms 11.3%

Total Latency 10.67 ms

Figure 5: Read and write latency for Frientegrity as the ob-
ject history size increases from 0 to 25000. Each data point
represents the median of 1000 requests. The dots above and
below the lines indicate the 90th and 10th percentiles for
each trial. The table breaks down the cost of a typical me-
dian read and write request.

0 500 1000 1500
Object History Size

0

200

400

600

800

1000

R
es

po
ns

e
L

at
en

cy
(m

s)

Frientegrity Read

Read
Write

Figure 6: Latency for requests in a naive implementation
using hash chains. The red arrow indicates the response
time for Frientegrity read requests at an object size of 2000.
Each data point is the median of 100 requests. The error
bars indicate the 90th and 10th percentiles.

operations, the constant-time overhead of a public-key
signature or verification continues to dominate the cost.

Next, we performed these same microbenchmarks on
an implementation that verifies object history using a hash
chain, rather than Frientegrity’s history trees. In this exper-
iment, each client was stateless, and so it had to perform
a complete verification when reading an object. This
verification time grows linearly with the object history

Object Signatures 7210 B
History Tree Hashes 640 B
Dependency Annotations 224 B
Other Metadata 1014 B

ACL ACL PAD 453 B
Signatures in ACL History 1531 B
Hashes in ACL History Tree 32 B
Other Metadata 226 B

Total Overhead 11300 B

Table 1: Sources of network overhead of a typical read of
an object’s five most recent updates.

size, as shown in Figure 6. Given this linear growth in
latency, verifying an object with history size of 25,000
operations would take approximately 10 s in the implemen-
tation based on a hash chain compared to Frientegrity’s
6 ms.

The performance of hash chains could be improved by
having clients cache the results of previous verifications
so they would only need to verify subsequent operations.
Even if clients were stateful, however, Figure 4 shows that
fetching the latest updates of the most prolific users would
still require hundreds of verifications per day. Worse still,
following new users or switching between client devices
could require tens of thousands of verifications.

7.2 Network Overhead

When network bandwidth is limited, the size of the mes-
sages that Frientegrity sends over the network can impact
latency and throughput. To understand this effect, we
measure the overhead that Frientegrity’s verification and
access control mechanisms add to an object that is fetched.
Table 1 provides a breakdown of the sources of overhead
in a read of the five most recent operations in an object.
The object is comprised of 100 operations all created by
a single writer. We assume that the ACL that applies to
the object only contains a single user and his associated
encrypted key and that the ACL history object contains
only two operations (an initial operation and the operation
that added the single user).

As shown in Table 1, the total overhead added by Fri-
entegrity is 11,300 B, which would add approximately
90 ms of download time on a 1 Mbps link. Not surpris-
ingly, the majority of the overhead comes from the signa-
tures on individual operations and in prevCommitments.
The object history tree contains 14 signatures, and the
ACL history contains another four. Together, this many
2048-bit RSA bare signatures would require 4068 bytes,
but because Frientegrity employs spliced signatures, they
require additional overhead in exchange for faster signing
and verification.

12

7.3 Latency of Fetching a News Feed
To present a user with a news feed, the client must perform
one readObject RPC for each of the user’s friends, and so
we expect the latency of fetching a news feed to scale lin-
early with the number of friends. Because clients can hide
network latency by pipelining requests to the server, we
expect the cost of decryption and verification to dominate.

To evaluate the latency of fetching a news feed, we
varied the number of friends from 1 to 50. We repeated
each experiment 500 times and computed the median of
the trials. A linear regression test on the results showed
an overhead of 3.557 ms per additional friend (with a
correlation coefficient of 0.99981). As expected, the value
is very close to the cost of client signature verification and
decryption from Figure 5.

Users in social networks may have hundreds of friends,
however. In 2011, the average Facebook user had
190 friends, while the 90th percentile of users had 500
friends [19]. With Frientegrity’s measured per-object over-
head, fetching wall posts from all 500 friends would re-
quire approximately 1.8 s. In practice, we expect a social
networking site to use modern Web programming tech-
niques (e.g., asynchronous Javascript) so that news feed
items could be loaded in the background and updated in-
crementally while a user stays on a website. Even today,
social networking sites often take several seconds to fully
load.

7.4 Server Throughput with Many Clients
Social networks must scale to millions of active users.
Therefore, to reduce capital and operational costs, it is
important that a server be able to maximize throughput
while maintaining low latency. To characterize a loaded
server’s behavior, we evaluated its performance as we
increased the number of clients, all issuing requests to the
same object. In this experiment, we ran multiple client
machines, each with at most 4 clients. Each client issued
3000 requests sequentially, performing a 10 B write with
a 1% probability and a read otherwise.

Figure 7 plots server throughput as the number of clients
increases, as well as server latency as a function of load.
We measured server latency from the time it received a
request until the time that it started writing data back to its
network socket. The server reached a maximal through-
put of handling around 3500 requests per second, while
median latency remained below 0.5 ms.

7.5 Effect of Increasing f
Frientegrity supports collaborative verification of object
histories. The number of malicious clients that can be
tolerated, f , has a large impact on client performance. As
f increases, the client has to examine operations further
back in the history until it finds f + 1 different writers. To

0 10 20 30 40 50
of Clients

0

500

1000

1500

2000

2500

3000

3500

4000

4500

T
hr

ou
gh

pu
t(

re
qu

es
t/s

)

Server Latency
Throughput

0.0

0.1

0.2

0.3

0.4

0.5

R
ea

d
L

at
en

cy
(m

s)

Figure 7: Server performance under increased client load.
Each data point is the median of 5 runs.

0 10 20 30 40 50
f + 1

10

100

1000

R
es

po
ns

e
L

at
en

cy
(m

s)

Power
Uniform

Figure 8: Performance implication of varying minimum set
of trusted writers for collaborative verification.

understand this effect, we measured the read latency of a
single object as f grows.

In this experiment, 50 writers first issued 5000 updates
to the same object. We evaluated two different workloads
for clients. In uniform, each writer had a uniform prob-
ability (2%) of performing the write; in power law, the
writers were selected from a power-law distribution with
α=3.5 (this particular α was the observed distribution of
chat activity among users of Microsoft messaging [32]).
A client then issued a read using increasing values of f .
Read latencies plotted in Figure 8 are the median of 100
such trials.

In the uniform distribution, the number of required ver-
ifications rises slowly. But as f + 1 exceeds the number
of writers, the client must verify the entire history. For
the power law distribution, however, as f increases, the
number of required verifications rises more rapidly, and at
f = 42, the client must verify all 5000 updates. Neverthe-
less, this experiment shows that Frientegrity can maintain
good performance in the face of a relatively large num-
ber of malicious users. Even with f at nearly 30, the
verification latency was only 100 ms.

7.6 Latency of ACL Modifications
In social networking applications, operations on ACLs
must perform well even when ACL sizes reach hundreds

13

0 200 400 600 800 1000
ACL Size

0

5

10

15

20

25

30

35

40

45
R

es
po

ns
e

L
at

en
cy

(m
s)

Update FoF Key
Add User

Revoke User

Figure 9: Latency of various ACL operations as a function
of number of friends. Friend of Friend updates are mea-
sured as time to change a single user’s FoF key. Each data
point is the mean of 100 runs.

of users. When a user Alice updates her ACL, she first
fetches it and its corresponding ACL history and checks
that they are consistent. In response, Alice’s friend Bob
updates the key he shares with friends-of-friends (FoFs).
To do so, he fetches and checks Alice’s ACL in order
retrieve her updated key. He then proceeds to fetch, check,
and update his own ACL.

To evaluate the cost of these ACL operations, we mea-
sured Frientegrity’s performance as two users, Alice and
Bob, make changes to their ACLs. While Alice added
and removed users from her ACL, Bob updated the key
he shares with FoFs. We performed this experiment for
different ACL sizes and plotted the results in Figure 9.

As expected, updating the key shared with FoFs was
the most costly operation because it requires verifying
two ACLs instead of one. Furthermore, adding a new
user to an ACL took longer than removing one because
it requires a public key encryption. Finally, we observed
that although modifying an ACL entails a logarithmic
number of symmetric key operations, the cost of these
operations was dominated by constant number of public
key operations required to verify and update the ACL
history.

8. Related Work

Decentralized approaches: To address the security con-
cerns surrounding social networking, numerous works
have proposed decentralized designs, in which the social
networking service is provided by a collection of fed-
erated nodes. In Diaspora [17], perhaps the most well
known of these systems, users can choose to store their
data with a number of different providers called “pods.” In
other systems, including Safebook [14], eXO [36], Peer-
SoN [6], porkut [44], and Confidant [35], users store their
data on their own machines or on the machines of their
trusted friends, and these nodes are federated via a dis-
tributed hash table. Still others, such as PrPl [48] and

Vis-à-Vis [49], allow users’ data to migrate between users’
own machines and trusted third-party infrastructure. We
have argued, however, that decentralization is an insuffi-
cient approach. A user is left with an unenviable dilemma:
either sacrifice availability, reliability, scalability, and con-
venience by storing her data on her own machine, or en-
trust her data to one of several providers that she probably
does not know or trust any more than she would a central-
ized provider.

Cryptographic approaches: Many other works aim to
protect social network users’ privacy via cryptography.
Systems such as Persona [5], flyByNight [37], NOYB [25],
and Contrail [53] store users’ data with untrusted providers
but protect its contents with encryption. Others, such as
Hummingbird [9], Lockr [56], and systems from Backes et
al. [3], Domingo-Ferrer et al. [18] and Carminati et al. [8]
attempt to hide a user’s social relationships as well, ei-
ther from the provider or from other users. But, they do
not offer any defenses against the sort of traffic analysis
we describe in §2.3 other than decentralization. Unlike
Frientegrity, in many of these systems (e.g., [5, 9, 37]),
“un-friending” requires work that is linear in the number
of a user’s friends. The scheme of Sun et al. [54] is an ex-
ception, but it does not support FoFs. EASiER [28] aims
to achieve efficient revocation via broadcast encryption
techniques and a reencrypting proxy, but when deployed
in the DECENT [29] distributed social network, it appears
to perform poorly for reasons that are unclear. All of these
systems, however, focus primarily on protecting users’
privacy while largely neglecting the integrity of users’
data. They either explicitly assume that third parties are
“honest-but-curious” (e.g., [9, 37]), or they at most employ
signatures on individual messages. None deal with the
prospect of provider equivocation, however.

Defending against equivocation: Several systems
have addressed the threat of server equivocation in net-
work file systems [33, 34], key-value stores [7, 38, 50],
and group collaboration [21] by enforcing fork* consis-
tency and related properties. But to enforce fork* consis-
tency, they require clients to perform work that is linear in
either the number of users or the number of updates ever
submitted to the system. This overhead is impractical in
social networks with large numbers of users and in which
users typically are interested only in the latest updates.

FETHR [45] is a Twitter-like service that defends
against server equivocation by linking a user’s posts to-
gether with a hash chain as well as optionally entangling
multiple users’ histories. But besides not supporting ac-
cess control, it lacks a formal consistency model. Thus,
unless a client verifies a user’s entire history back to the
beginning, FETHR provides no correctness guarantees.

14

9. Conclusion and Future Work
In designing Frientegrity, we sought to provide a general
framework for social networking applications built around
an untrusted service provider. The system had to both
preserve data confidentiality and integrity, yet also remain
efficient, scalable, and usable. Towards these goals, we
present a novel method for detecting server equivocation
in which users collaborate to verify object histories, and
more efficient mechanisms for ensuring fork* consistency
based on history trees. Furthermore, we provide a novel
mechanism for efficient access control by combining per-
sistent authenticated dictionaries and key graphs.

In addition to introducing these new mechanisms, we
evaluate a Frientegrity prototype on synthetic workloads
inspired by the scale of real social networks. Even as
object histories stretch into the tens of thousands and ac-
cess control lists into the hundreds, Frientegrity provides
response times satisfactory for interactive use, while main-
taining strong security and integrity guarantees.

Like other social networking systems that store users’
encrypted data with an untrusted provider [5, 25, 37, 53],
Frientegrity faces the problem of how such third-party
infrastructure would be paid for. It has been suggested that
providers would not accept a business model that would
prevent them from mining the plaintext of users’ data for
marketing purposes. Whether this is so has not been well
studied. Although there has been some work on privacy-
preserving advertising systems[26, 57], the development
of business models that can support privacy-preserving
services hosted with third-party providers largely remains
future work.

Acknowledgments We thank Andrew Appel, Matvey
Arye, Wyatt Lloyd, and our anonymous reviewers for their
insights and helpful comments. This research was sup-
ported by funding from NSF CAREER Award #0953197,
an ONR Young Investigator Award, and a gift from
Google.

References
[1] T. E. Anderson, M. D. Dahlin, J. M. Neefe, D. A. Patterson,

D. S. Roselli, and R. Y. Wang. Serverless network file
systems. ACM TOCS, 14(1), 1996.

[2] C. R. Aragon and R. G. Seidel. Randomized search trees.
In Proc. FOCS, Oct. 1989.

[3] M. Backes, M. Maffei, and K. Pecina. A security API for
distributed social networks. In Proc. NDSS, Feb. 2011.

[4] L. Backstrom, C. Dwork, and J. Kleinberg. Wherefore
Art Thou R3579X? Anonymized social networks, hidden
patterns, and structural steganography. In Proc. WWW,
May 2007.

[5] R. Baden, A. Bender, N. Spring, B. Bhattacharjee, and
D. Starin. Persona: an online social network with user-
defined privacy. In Proc. SIGCOMM, Aug. 2009.

[6] S. Buchegger, D. Schiöberg, L. hung Vu, and A. Datta.
PeerSoN: P2P social networking early experiences and
insights. In Proc. SNS, Mar. 2009.

[7] C. Cachin, I. Keidar, and A. Shraer. Fail-aware untrusted
storage. In Proc. DSN, June 2009.

[8] B. Carminati and E. Ferrari. Privacy-aware collaborative
access control in web-based social networks. In Proc.
DBSec, July 2008.

[9] E. D. Cristofaro, C. Soriente, G. Tsudik, and A. Williams.
Hummingbird: Privacy at the time of twitter. Cryp-
tology ePrint Archive, Report 2011/640, 2011. http:
//eprint.iacr.org/.

[10] S. A. Crosby and D. S. Wallach. High throughput asyn-
chronous algorithms for message authentication. Technical
Report CS TR10-15, Rice University, Dec. 2010.

[11] S. A. Crosby and D. S. Wallach. Efficient data structures
for tamper-evident logging. In Proc. USENIX Security,
Aug. 2009.

[12] S. A. Crosby and D. S. Wallach. Super-efficient aggregat-
ing history-independent persistent authenticated dictionar-
ies. In Proc. ESORICS, Sept. 2009.

[13] S. A. Crosby and D. S. Wallach. Reference implemen-
tation of history trees and spliced signatures. https:
//github.com/scrosby/fastsig, Dec. 2010.

[14] L. A. Cutillo, R. Molva, T. Strufe, and T. Darmstadt.
Safebook: A privacy-preserving online social network
leveraging on real-life trust. IEEE Communications Maga-
zine, 47(12):94–101, Dec. 2009.

[15] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati,
A. Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall,
and W. Vogels. Dynamo: Amazon’s highly available key-
value store. In Proc. SOSP, Oct. 2007.

[16] S. Deo. protobuf-socket-rpc: Java and python
protobuf rpc implementation using TCP/IP sockets
(version 2.0). http://code.google.com/p/
protobuf-socket-rpc/, May 2011.

[17] Diaspora. Diaspora project. http://
diasporaproject.org/. Retrieved April 23,
2012.

[18] J. Domingo-Ferrer, A. Viejo, F. Sebé, and ı́rsula González-
Nicolás. Privacy homomorphisms for social networks with
private relationships. Computer Networks, 52:3007–3016,
Oct. 2008.

[19] Facebook, Inc. Anatomy of facebook. http://www.
facebook.com/notes/facebook-data-team/
anatomy-of-facebook/10150388519243859,
Nov. 2011.

[20] Facebook, Inc. Fact sheet. http://newsroom.fb.
com/content/default.aspx?NewsAreaId=22.
Retrieved April 23, 2012.

[21] A. J. Feldman, W. P. Zeller, M. J. Freedman, and E. W.
Felten. Sporc: Group collaboration using untrusted cloud
resources. In Proc. OSDI, Oct. 2010.

[22] Flickr. Flickr phantom photos. http://flickr.com/
help/forum/33657/, Feb. 2007.

[23] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google
file system. In Proc. SOSP, Oct. 2003.

15

http://eprint.iacr.org/
http://eprint.iacr.org/
https://github.com/scrosby/fastsig
https://github.com/scrosby/fastsig
http://code.google.com/p/protobuf-socket-rpc/
http://code.google.com/p/protobuf-socket-rpc/
http://diasporaproject.org/
http://diasporaproject.org/
http://www.facebook.com/notes/facebook-data-team/anatomy-of-facebook/10150388519243859
http://www.facebook.com/notes/facebook-data-team/anatomy-of-facebook/10150388519243859
http://www.facebook.com/notes/facebook-data-team/anatomy-of-facebook/10150388519243859
http://newsroom.fb.com/content/default.aspx?NewsAreaId=22
http://newsroom.fb.com/content/default.aspx?NewsAreaId=22
http://flickr.com/help/forum/33657/
http://flickr.com/help/forum/33657/

[24] Google, Inc. Transparency report. https:
//www.google.com/transparencyreport/
governmentrequests/userdata/. Retrieved
April 23, 2012.

[25] S. Guha, K. Tang, and P. Francis. NOYB: Privacy in online
social networks. In Proc. WOSN, Aug. 2008.

[26] S. Guha, B. Cheng, and P. Francis. Privad: Practical privacy
in online advertising. In Proc. NSDI, Mar. 2011.

[27] M. P. Herlihy and J. M. Wing. Linearizability: A correct-
ness condition for concurrent objects. ACM TOPLAS, 12
(3), 1990.

[28] S. Jahid, P. Mittal, and N. Borisov. EASiER: Encryption-
based access control in social networks with efficient revo-
cation. In Proc. ASIACCS, Mar. 2011.

[29] S. Jahid, S. Nilizadeh, P. Mittal, N. Borisov, and A. Kapa-
dia. DECENT: A decentralized architecture for enforcing
privacy in online social networks. In Proc. SESOC, Mar.
2012.

[30] D. Karger, E. Lehman, T. Leighton, M. Levine, D. Lewin,
and R. Panigrahy. Consistent hashing and random trees:
Distributed caching protocols for relieving hot spots on the
World Wide Web. In Proc. STOC, May 1997.

[31] L. Lamport. The part-time parliament. ACM TOCS, 16(2):
133–169, 1998.

[32] J. Leskovec and E. Horvitz. Planetary-scale views on a
large instant-messaging network. In Proc. WWW, Apr.
2008.

[33] J. Li and D. Mazières. Beyond one-third faulty replicas
in Byzantine fault tolerant systems. In Proc. NSDI, Apr.
2007.

[34] J. Li, M. N. Krohn, D. Mazières, and D. Shasha. Secure
untrusted data repository (SUNDR). In Proc. OSDI, Dec.
2004.

[35] D. Liu, A. Shakimov, R. Cáceres, A. Varshavsky, and L. P.
Cox. Confidant: Protecting OSN data without locking it
up. In Proc. Middleware, Dec. 2011.

[36] A. Loupasakis, N. Ntarmos, and P. Triantafillou. eXO:
Decentralized autonomous scalable social networking. In
Proc. CIDR, Jan. 2011.

[37] M. M. Lucas and N. Borisov. flyByNight: mitigating the
privacy risks of social networking. In Proc. WPES, Oct.
2008.

[38] P. Mahajan, S. Setty, S. Lee, A. Clement, L. Alvisi,
M. Dahlin, and M. Walfish. Depot: Cloud storage with
minimal trust. In Proc. OSDI, Oct. 2010.

[39] D. Mazières and D. Shasha. Building secure file systems
out of byzantine storage. In Proc. PODC, July 2002.

[40] J. P. Mello. Facebook scrambles to fix security hole expos-
ing private pictures. PC World, Dec. 2011.

[41] R. C. Merkle. A digital signature based on a conventional
encryption function. CRYPTO, pages 369–378, 1987.

[42] Mozilla Project. Network security services for Java
(JSS). https://developer.mozilla.org/En/
JSS. Retrieved April 23, 2012.

[43] A. Narayanan and V. Shmatikov. De-anonymizing social
networks. In Proc. IEEE S & P, May 2009.

[44] R. Narendula, T. G. Papaioannou, and K. Aberer. Privacy-
aware and highly-available OSN profiles. In Proc. WET-
ICE, June 2010.

[45] D. R. Sandler and D. S. Wallach. Birds of a FETHR: Open,
decentralized micropublishing. In Proc. IPTPS, Apr. 2009.

[46] R. Sanghvi. Facebook blog: New tools to control your
experience. https://blog.facebook.com/blog.
php?post=196629387130, Dec. 2009.

[47] E. Schonfeld. Watch out who you reply to on google buzz,
you might be exposing their email address. TechCrunch,
Feb. 2010.

[48] S.-W. Seong, J. Seo, M. Nasielski, D. Sengupta, S. Hangal,
S. K. Teh, R. Chu, B. Dodson, and M. S. Lam. PrPl: A
decentralized social networking infrastructure. In Proc.
MCS, June 2010.

[49] A. Shakimov, H. Lim, R. Caceres, L. P. Cox, K. Li, D. Liu,
and A. Varshavsky. Vis-à-Vis: Privacy-preserving online
social networking via virtual individual servers. In Proc.
COMSNETS, Jan. 2011.

[50] A. Shraer, C. Cachin, A. Cidon, I. Keidar, Y. Michalevsky,
and D. Shaket. Venus: Verification for untrusted cloud
storage. In Proc. CCSW, Oct. 2010.

[51] S. Song. Why I left Sina Weibo. http://songshinan.
blog.caixin.cn/archives/22322, July 2011.

[52] M. Stonebraker. The case for shared nothing. IEEE
Database Engineering Bulletin, 9(1):4–9, 1986.

[53] P. Stuedi, I. Mohomed, M. Balakrishnan, Z. M. Mao, V. Ra-
masubramanian, D. Terry, and T. Wobber. Contrail: En-
abling decentralized social networks on smartphones. In
Proc. Middleware, Dec. 2011.

[54] J. Sun, X. Zhu, and Y. Fang. A privacy-preserving scheme
for online social networks with efficient revocation. In
Proc. INFOCOM, Mar. 2010.

[55] D. B. Terry, M. M. Theimer, K. Petersen, A. J. Demers,
M. J. Spreitzer, and C. H. Hauser. Managing update con-
flicts in Bayou, a weakly connected replicated storage sys-
tem. In Proc. SOSP, Dec. 1995.

[56] A. Tootoonchian, S. Saroiu, Y. Ganjali, and A. Wol-
man. Lockr: Better privacy for social networks. In Proc.
CoNEXT, Dec. 2009.

[57] V. Toubiana, A. Narayanan, D. Boneh, H. Nissenbaum,
and S. Barocas. Adnostic: Privacy preserving targeted
advertising. In Proc. NDSS, Feb. 2010.

[58] D. Wheeler. SLOCCount. http://www.dwheeler.
com/sloccount/. Retrieved April 23, 2012.

[59] C. K. Wong, M. Gouda, and S. S. Lam. Secure group
communications using key graphs. IEEE/ACM TON, 8(1):
16–30, 1998.

[60] M. Zuckerberg. Facebook S-1: Letter from Mark
Zuckerberg. http://sec.gov/Archives/
edgar/data/1326801/000119312512034517/
d287954ds1.htm#toc287954_10, Feb. 2012.

16

https://www.google.com/transparencyreport/governmentrequests/userdata/
https://www.google.com/transparencyreport/governmentrequests/userdata/
https://www.google.com/transparencyreport/governmentrequests/userdata/
https://developer.mozilla.org/En/JSS
https://developer.mozilla.org/En/JSS
https://blog.facebook.com/blog.php?post=196629387130
https://blog.facebook.com/blog.php?post=196629387130
http://songshinan.blog.caixin.cn/archives/22322
http://songshinan.blog.caixin.cn/archives/22322
http://www.dwheeler.com/sloccount/
http://www.dwheeler.com/sloccount/
http://sec.gov/Archives/edgar/data/1326801/000119312512034517/d287954ds1.htm#toc287954_10
http://sec.gov/Archives/edgar/data/1326801/000119312512034517/d287954ds1.htm#toc287954_10
http://sec.gov/Archives/edgar/data/1326801/000119312512034517/d287954ds1.htm#toc287954_10

	Introduction
	System Model
	Goals
	Detecting Server Equivocation
	Threat Model

	System Overview
	Example: Fetching a News Feed
	Enforcing Fork* Consistency
	Making Access Control Verifiable
	Preventing ACL Rollbacks

	System Design
	Making Objects Verifiable
	Object Representation
	Verifying an Object Collaboratively
	Correctness of Object Verification

	Dependencies Between Objects
	Verifiable Access Control
	Supporting Membership Proofs
	Preventing Equivocation about ACLs
	Efficient Key Management and Revocation
	Supporting Friends-of-Friends

	Extensions
	Discovering Friends
	Multiple Group Administrators
	Dealing with Conflicts
	Public Feeds with Many Followers

	Implementation
	Experimental Evaluation
	Single-object Read and Write Latency
	Network Overhead
	Latency of Fetching a News Feed
	Server Throughput with Many Clients
	Effect of Increasing f
	Latency of ACL Modifications

	Related Work
	Conclusion and Future Work

