
Towards Predictable
Multi-Tenant Shared Cloud Storage

David Shue?, Michael J. Freedman?, and Anees Shaikh†
?Princeton University, †IBM TJ Watson Research Center

An increasing number and variety of enterprises are
moving workloads to cloud platforms. Whether serv-
ing external customers or internal business units, cloud
platforms typically allow multiple users, or tenants, to
share the same physical server and network infrastruc-
ture, as well as use common platform services. Examples
of these shared, multi-tenant services include key-value
stores, block storage volumes, message queues, and no-
tification services. These leverage the expertise of the
cloud provider in building, managing, and improving
common services, and enable the statistical multiplexing
of resources between tenants for higher utilization.

Because they rely on shared infrastructure, however,
these services face two key, related issues:

• Multi-tenant interference and unfairness: Tenants
simultaneously accessing shared services contend
for resources and degrade performance.

• Variable and unpredictable performance: Tenants
often experience significant performance variations,
e.g., in response time or throughput, even when they
can achieve their desired mean rate [2, 8, 14, 16].

These issues limit the types of applications that can
migrate to multi-tenant clouds and leverage shared ser-
vices. They also inhibit cloud providers from offering
differentiated service levels, in which some tenants can
pay for performance isolation and predictability, while
others can choose standard “best-effort” behavior.

Shared back-end storage services face different chal-
lenges than sharing server resources at the virtual machine
(VM) level. These stores divide tenant workloads into
disjoint partitions, which are then distributed (and repli-
cated) across service instances. Rather than managing
individual storage partitions, cloud tenants want to treat
these storage systems as black boxes, in which aggregate
storage capacity and request rates can be elastically scaled
on demand. Resource contention arises when tenants’ par-
titions are co-located, and the degree of resource sharing
between tenants may be significantly higher and more
fluid than with coarse VM resource allocation. Particu-
larly, as tenants may use only a small fraction of a server’s
throughput and capacity, restricting nodes to a few tenants
may leave them highly underutilized.

To improve predictability for shared storage systems
with a high degree of resource sharing and contention,
we target global max-min fairness. Under max-min fair-
ness, no tenant can gain an unfair advantage over another
when the system is loaded, i.e., each tenant will receive its
weighted fair share. Moreover, given its work-conserving
nature, when some tenants use less than their full share,
unconsumed shares are divided among the rest to ensure
high utilization. In all cases, each tenant enjoys perfor-
mance (latency) isolation. While the mechanisms we pro-
pose may be applicable to a range of services with shared-
nothing architectures [12], we focus our design and evalu-
ation on a replicated key-value storage service, which we
call PISCES (Predictable Shared Cloud Storage).

Providing fair resource allocation and isolation at the
service level is confounded by variable demand to differ-
ent service partitions. Even if tenant objects are uniformly
distributed across their partitions, per-object demand is
often skewed, both in terms of request rate and request
size. This imbalance in object popularity may create
hotspots for particular partitions [4]. Moreover, different
request workloads may stress different server resources
(e.g., small requests are interrupt limited, while large re-
quests are bandwidth limited). In short, assuming that
each tenant requires the same proportion of resources per
partition can lead to unfairness and inefficiency.

To address these issues, PISCES introduces a novel
decomposition of the global fairness problem into four
mechanisms based on the primal-allocation method of
distributed convex optimization [11]. Operating on differ-
ent timescales and with different levels of system-wide
visibility, these mechanisms complement one another to
ensure fairness under resource contention and variable
demand. Figure 1 shows the high-level architecture.

(1) Partition Placement, computed at a centralized con-
troller, ensures a feasible fair allocation by assigning (or
remapping) tenant partitions (p) to nodes according to
per-partition demand collected at the service nodes. Us-
ing these statistics, the controller determines each tenant’s
per-partition fair-share from their global weights and it
moves any partitions that violate per-node resource con-
straints to nodes with available capacity (long timescale).

(2) Weight Allocation distributes overall tenant fair
shares across the system where most needed, i.e., skew-
ing shares to the popular partitions, by adjusting local



Tenant A Tenant B Tenant C

Node 2 Node 3 Node 4

VM VM VM VM VM VM VM VM VM

5

Node 1
pp p

pp p p

RR

p p p
p

wa1 wb1

GET 1101100

wc1

weightA weightB weightC 
Tenant D
VM VM VM

weightD 

1
3

4

p
p

p

wd1 wa2 wb2 wc2 wd2 wa3 wb3 wc3 wd3 wa4 wb4 wc4 wd4

Controller

2

Figure 1: PISCES multi-tenant storage architecture.

per-tenant weights at each node (wtn). To preserve global
fairness, the controller performs reciprocal swaps—if ten-
ant a takes weight from b at node x, then a must give
back to b on a different node y—in an effort to minimize
overall system latency (medium timescale).

(3) Replica Selection at request routers (RR) improves
both fairness and performance by directing tenant requests
to service nodes in a local weight-sensitive manner. It
uses a FAST-TCP [15]-like algorithm that not only selects
a replica based on request latency but also throttles the
request rate to enhance performance isolation (real-time).

(4) Weighted Fair Queuing at service nodes enforces
performance isolation and fairness according to the lo-
cal tenant weights and workload characteristics. Since
workloads vary between tenants and can stress different
resources, we enforce dominant resource fairness [3] be-
tween tenants over multiple resources by extending tradi-
tional deficit-weighted round robin, while still providing
max-min fairness at the service level (real-time).

To our knowledge, PISCES is the first system to pro-
vide system-wide per-tenant fair resource sharing across
all service instances. Most systems proposed in the re-
search community either share resources on a single node
among multiple clients [6, 13], share system-wide re-
sources for a single tenant [5, 9], or allocate resources
on a coarse-grained level [7, 10]. Further, since each
tenant receives a weighted share of the total system ca-
pacity, PISCES can also provide minimal performance
guarantees (reservations) given sufficient provisioning.1

In comparison, recent commercial systems that offer re-
quest rate guarantees (i.e., Amazon DynamoDB) do not
provide fairness, assume uniform load distributions across
tenant partitions, and are not work conserving.

PISCES is also designed to support high server utiliza-
tion, e.g., high request rates (100,000s requests per sec-
ond, per server) or full bandwidth usage (Gbps per server).
Through careful system design, our prototype, based on
the Membase key-value storage system [1], suffers <3%
overhead for 1KB requests and actually outperforms the

1Tenants that do not adopt (pay for) this higher level of service
assurance form a single best-effort class with a minimum total share.

29

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

 0  10  20  30  40  50  60

G
ET

 R
eq

ue
st

s 
(k

re
q/

s)

Time (s)

ideal fair share
(109 kreq/s)  

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  10  100

To
ta

l F
ra

ct
io

n 
O

f R
eq

ue
st

s

Latency (ms)

Median latency (ms)
t1: 4.05
t2: 4.23
t3: 4.18
t4: 4.17
t5: 4.12
t6: 4.13
t7: 4.19
t8: 4.23

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

 0  10  20  30  40  50  60

G
ET

 R
eq

ue
st

s 
(k

re
q/

s)

Time (s)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  10  100

To
ta

l F
ra

ct
io

n 
O

f R
eq

ue
st

s

Latency (ms)

Median latency (ms)
t1: 3.77
t2: 4.24
t3: 3.77
t4: 3.91
t5: 5.24
t6: 5.30
t7: 4.89
t8: 3.51

(a) Membase (no queuing)

29

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

 0  10  20  30  40  50  60

G
ET

 R
eq

ue
st

s 
(k

re
q/

s)

Time (s)

ideal fair share
(109 kreq/s)  

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  10  100

To
ta

l F
ra

ct
io

n 
O

f R
eq

ue
st

s

Latency (ms)

Median latency (ms)
t1: 4.05
t2: 4.23
t3: 4.18
t4: 4.17
t5: 4.12
t6: 4.13
t7: 4.19
t8: 4.23

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

 0  10  20  30  40  50  60

G
ET

 R
eq

ue
st

s 
(k

re
q/

s)

Time (s)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  10  100

To
ta

l F
ra

ct
io

n 
O

f R
eq

ue
st

s

Latency (ms)

Median latency (ms)
t1: 3.77
t2: 4.24
t3: 3.77
t4: 3.91
t5: 5.24
t6: 5.30
t7: 4.89
t8: 3.51

(b) PISCES (WFQ + RS)

Figure 2: System throughput fairness (8 tenants)

30

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  10  100

To
ta

l F
ra

ct
io

n 
O

f R
eq

ue
st

s

Latency (ms)

Median latency (ms)
t1: 4.28
t2: 4.99
t3: 3.94
t4: 4.50
t5: 4.01
t6: 4.14
t7: 4.09
t8: 3.27

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

 0  10  20  30  40  50  60

G
ET

 R
eq

ue
st

s 
(k

re
q/

s)

Time (s)

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

 0  10  20  30  40  50  60

G
ET

 R
eq

ue
st

s 
(k

re
q/

s)

Time (s)

2x demand
1x demand

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  10  100

To
ta

l F
ra

ct
io

n 
O

f R
eq

ue
st

s

Latency (ms)

Median latency (ms)
t1: 5.40
t2: 5.45
t3: 5.41
t4: 5.41
t5: 2.83
t6: 2.79
t7: 2.78
t8: 2.81

(a) Membase (no queuing) 2x
30

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  10  100

To
ta

l F
ra

ct
io

n 
O

f R
eq

ue
st

s

Latency (ms)

Median latency (ms)
t1: 4.28
t2: 4.99
t3: 3.94
t4: 4.50
t5: 4.01
t6: 4.14
t7: 4.09
t8: 3.27

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

 0  10  20  30  40  50  60

G
ET

 R
eq

ue
st

s 
(k

re
q/

s)

Time (s)

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

 0  10  20  30  40  50  60

G
ET

 R
eq

ue
st

s 
(k

re
q/

s)

Time (s)

2x demand
1x demand

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  10  100

To
ta

l F
ra

ct
io

n 
O

f R
eq

ue
st

s

Latency (ms)

Median latency (ms)
t1: 5.40
t2: 5.45
t3: 5.41
t4: 5.41
t5: 2.83
t6: 2.79
t7: 2.78
t8: 2.81

(b) PISCES (WFQ + RS) 2x

Figure 3: System performance isolation (8 tenants)

unmodified, non-fair version for small (interrupt-bound)
requests. Commercial offerings like DynamoDB seem
to expect fairly low rates (e.g., rates higher than 10,000
reqs/s require special arrangements).

Through experimental evaluation, we demonstrate that
PISCES significantly improves the multi-tenant fairness
and isolation properties of our key-value store. PISCES
achieves near ideal throughput fairness for 8 tenants on
an 8 node storage system (0.97 Max-Min Ratio vs. 0.68
MMR for unmodified Membase), as shown in Figure 2.
PISCES also provides strong performance isolation be-
tween tenants: Figure 3 shows tenants with equal shares
but unequal demand, as 4 of the tenants send requests at
twice the normal rate. Despite the excess load, PISCES
maintains 0.97 MMR throughput fairness for all tenants,
while only penalizing the request latency of tenants with
2x demand. Additional experiments, omitted due to space
constraints, show similar results across a range of object
sizes (from 10 bytes to 10 kB), with different read/write
workload mixes, and under highly skewed and dynamic
partition distributions that require PISCES to (re)allocate
local weights according to the shifting demand.

2



References
[1] Couchbase. Membase. http://www.

couchbase.org/, Jan. 2012.
[2] S. L. Garfinkel. An evaluation of Amazon’s grid

computing services: EC2, S3 and SQS. Technical
Report TR-08-07, Harvard Univ., 2007.

[3] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski,
S. Shenker, and I. Stoica. Dominant resource fair-
ness: Fair allocation of multiple resource types. In
NSDI, Mar. 2011.

[4] P. B. Godfrey and I. Stoica. Heterogeneity and load
balance in distributed hash tables. In INFOCOM,
Mar. 2005.

[5] A. Gulati, I. Ahmad, and C. A. Waldspurger.
PARDA: Proportional allocation of resources for
distributed storage access. In FAST, Feb. 2009.

[6] A. Gulati, A. Merchant, and P. J. Varman. mClock:
Handling throughput variability for hypervisor IO
scheduling. In OSDI, Oct. 2010.

[7] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi,
A. D. Joseph, R. Katz, S. Shenker, and I. Stoica.
Mesos: A platform for fine-grained resource sharing
in the data center. In NSDI, Mar. 2011.

[8] A. Iosup, N. Yigitbasi, and D. Epema. On the per-
formance variability of production cloud services.
In CCGrid, May 2011.

[9] J. C. McCullough, J. Dunagan, A. Wolman, and
A. C. Snoeren. Stout: an adaptive interface to scal-
able cloud storage. In USENIX Annual, June 2010.

[10] P. Padala, K.-Y. Hou, K. G. Shin, X. Zhu, M. Uysal,
Z. Wang, S. Singhal, and A. Merchant. Automated
control of multiple virtualized resources. In EuroSys,
Mar. 2009.

[11] D. Palomar and M. Chiang. A tutorial on decom-
position methods for network utility maximization.
JSAC, 24(8):1439–1451, Aug. 2006.

[12] M. Stonebraker. The case for shared nothing.
Database Engineering, 9(1):4–9, Mar. 1986.

[13] M. Wachs, M. Abd-el-malek, E. Thereska, and G. R.
Ganger. Argon: Performance insulation for shared
storage servers. In FAST, 2007.

[14] J. Wang, P. Varman, and C. Xie. Optimizing storage
performance in public cloud platforms. J. Zhejiang
Univ. – Science C, 11(12):951–964, Dec. 2011.

[15] D. X. Wei, C. Jin, S. H. Low, and S. Hegde. Fast
TCP: Motivation, architecture, algorithms, perfor-
mance. Trans. Networking, 14(6):1246–1259, Dec.
2006.

[16] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz,
and I. Stoica. Improving mapreduce performance in
heterogeneous environments. In OSDI, Dec. 2008.

3

http://www.couchbase.org/
http://www.couchbase.org/

