
Going Viral: Flash Crowds in an Open CDN

Patrick Wendell*
U.C. Berkeley

Berkeley, CA, USA
pwendell@eecs.berkeley.edu

Michael J. Freedman
Princeton University
Princeton, NJ, USA

mfreed@cs.princeton.edu

Abstract

Handling flash crowds poses a difficult task for web services. Con-
tent distribution networks (CDNs), hierarchical web caches, and
peer-to-peer networks have all been proposed as mechanisms for
mitigating the effects of these sudden spikes in traffic to under-
provisioned origin sites. Other than a few anecdotal examples of
isolated events to a single server, however, no large-scale analysis of
flash-crowd behavior has been published to date.

In this paper, we characterize and quantify the behavior of thou-
sands of flash crowds on CoralCDN, an open content distribution
network running at several hundred POPs. Our analysis considers
over four years of CDN traffic, comprising more than 33 billion
HTTP requests. We draw conclusions in several areas, including
(i) the potential benefits of cooperative vs. independent caching
by CDN nodes, (ii) the efficacy of elastic redirection and resource
provisioning, and (iii) the ecosystem of portals, aggregators, and
social networks that drive traffic to third-party websites.

Categories and Subject Descriptors: C.4 [Performance
of Systems]: Measurement Techniques

General Terms: Measurement, Performance

Keywords: content distribution networks, flash crowds

1. INTRODUCTION

Volatile request rates complicate the delivery of Internet services.
Most websites experience significant diurnal fluctuations in request
volume. Over shorter time scales, traffic may fluctuate due to the
changing popularity of content or localized events. The most severe
(and least predictable) type of volatility are flash crowds, which occur
when services see sudden, large, and often unforeseen increases in
request rates. Flash crowds are infamous for overwhelming even
well-provisioned services, causing HTTP clients to timeout when
trying to access starved server resources.

*Work performed while author was studying at Princeton University.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IMC ’11, November 2–4, 2011, Berlin, Germany.
Copyright 2011 ACM 978-1-4503-1013-0/11/11 . . . $10.00.

To insure themselves against the risk of a flash crowd, sites can
outsource static content distribution to CDNs such as Akamai, which
distribute traffic surges over a global network of content caches. This
strategy, however, does not generally address dynamically generated
content, where CPU cycles are required to construct user-customized
pages. To fill this gap, services are increasingly using cloud infras-
tructure (such as Amazon EC2) to scale dynamic content creation
in a similar fashion. Provisioning new resources in the cloud, while
not instantaneous, can be done orders-of-magnitude more quickly
than purchasing and installing new hardware.

While flash crowds have long been used as anecdotal motivation
for elastic-computing platforms, little research exists characteriz-
ing such events in an operational CDN. To address this limitation,
this paper analyzes flash crowds based on four years of data from
CoralCDN [4, 5], an open CDN comprised of globally cooperat-
ing proxies. Using data from thousands of flash crowds detected
amongst hundreds of thousands of domains, it answers several ques-
tions about the nature of flash crowds, both from the perspective of
an online service and from that of a large content distributer.

This paper uses flash-crowd data to shed light on three broad
aspects of online service delivery.

Cooperative Caching. In the best case, websites use a global
network of caches to prevent origin overload during flash crowds.
Whether distributed caches benefit from cooperation, as opposed to
each cache fetching content individually from the origin, depends
on the rate of requests and their distribution over caches. Section 3
evaluates the benefits of cooperative caching for real crowds.

Request Redirection and Elastic Provisioning. When unprece-
dented surges of traffic hit a service, it is often necessary to provision
new resources or re-allocate existing ones to handle the requests.
Services that operate on cloud infrastructure, for instance, might
want to spin up additional virtualized instances to further spread
load. Large content distributors with a fixed infrastructure may wish
to allocate a greater portion or number of their caches to a particular
customer [14]. Peer-to-peer systems may wish to build distribution
trees to replicate content quickly [5, 10, 13]. In Section 4, we analyze
how much time these parties might have to adapt their computing
footprint in the face of flash crowds.

Source Attribution. Third-party portals such as Slashdot are
often thought to be the primary drivers of flash crowds. These sites
operate as centralized “bulletin boards,” sharing a small set of links
amongst large numbers of simultaneous viewers. In Section 5, we
briefly consider how often these portals play a role in flash crowds
and assess whether decentralized, peer-to-peer link sharing (such as
Facebook or Twitter updates) creates equivalent request surges.

Before performing such analysis, we first describe our CoralCDN
data set and provide the working definition of a flash crowd that we
use throughout our analysis.

1

1.1 4 Years of Data from CoralCDN
CoralCDN is a open, cooperative content distribution network, de-
signed to proxy content requests for heavily loaded services. It
operates on a set of globally distributed machines that act as caching
proxies. Users fall broadly into three categorical use cases. First,
HTTP clients can explicitly access a piece of content through Coral-
CDN by “Coralizing” an existing URL (appending nyud.net to
any URL’s domain). This is a popular practice for links posted on
major portals, as the Coralized link helps prevent the origin server
from becoming overwhelmed by referred traffic. Second, some sites
persistently use these URLs for their embedded content, so that static
files are transparently requested via CoralCDN. Third, some sites
use HTTP redirects to offload traffic to CoralCDN during periods of
heavy load. When possible, we distinguish between these scenarios.

CoralCDN proxies persistently log data for each HTTP request
they service. The logs include the URL being accessed, any HTTP
referrers, the client IP address, and several other request attributes.
The results in this paper are drawn from four years of aggre-
gated CoralCDN logs, from 2007 to early 2011. These logs cover
33,354,760,349 individual HTTP requests and represent a complete
(not sampled) trace of all CoralCDN traffic during this period. That
said, a small number of logs are missing due to periodic failures of
CoralCDN proxies and its logging subsystem [4].

CoralCDN sees a biased cut of HTTP traffic, and in some cases,
this limits our exploration of the data. Since websites might use
CoralCDN intermittently, for instance, we cannot readily perform
longitudinal analysis across individual domains, e.g., to characterize
the frequency and scale of flash crowds that an average domain
would experience over the course of a year. We leave such analysis
to future work and carefully limit the scope of our inference.

2. DEFINING FLASH CROWDS

While the term “flash crowd” is in widespread use, prior work has
generally not defined what constitutes such a crowd (systems pro-
posals can be qualitative, and previous measurement studies [6] only
had traces of one or two such crowds). To detect crowds in such a
large dataset, we were pressed to craft a working mathematical defi-
nition of “flash crowd.” We present this definition both to describe
our own methodology and to standardize future research efforts.

2.1 Defining Flash Crowds
We define a flash crowd as a period over which request rates for a
particular fully-qualified domain name are increasing exponentially.
Call rti the average per-minute request rate over a particular time
period ti. We say a domain is experiencing a flash crowd if

rti > 2i · rt0 , ∀i ∈ [0, k]

and
max

i
rti > m ∧ max

i
rti > n · ravg

where constant m is a minimum per-minute request rate, and the
constant n specifies how much more the maximum sustained rate
must be than the service’s average rate. Effectively, this requires that
the crowd has occurred over a modest number of periods (at least k)
and resulted in a larger terminal rate (m) that is many times the mean
(n). Choices of k, m, and n are subjective, although in this study, we
use k = 3, m = 500 reqs/min, and n = 15. The use of such constants

may seem ad-hoc, but they are necessary in any derivative-based
definition in order to filter out small fluctuations. We continue to add
subsequent periods until we have seen τ periods (τ = 3) for which

rt j · 2
−1 < rt j+1 < rt j · 2

Many unique URLs may belong to the same crowd, e.g., they
represent embedded content in a web page. However, because they
may be served by different origin servers or CDNs, we conserva-
tively consider requests to different fully-qualified domains (e.g.,
a.example.com and b.example.com) as belonging to distinct crowds.

2.2 Request Rate Epochs and Crowd Speed
Thus far, we have not specified the granularity at which we measure
request rates. Adjusting the epoch period for request rate calculations
affects the type of crowd we detect. At shorter epochs, such as 60
seconds, we detect crowds that increase very rapidly but have a
limited duration. For instance, if rt0 were to be just 1 req/min, a
crowd lasting 30 minutes must have a terminal request rate rt30 of
more than one billion requests per minute to satisfy this definition.
On the other hand, crowd detection with longer epochs will present
a less extreme growth rate.

In this study, we consider crowds using six different epoch pe-
riods: 1, 2, 5, 10, 30, and 60 minutes. (Crowds detected using
shorter epochs provide less time for a service to react to its increased
demand, a problem explored in Section 4.) Using these definitions,
we identify 3,553 crowds in the CoralCDN trace. Of these, 1,052
crowds originate from fewer than 10 client IP addresses each; man-
ual inspection of some of these traces uncovered various undesired
uses, such as attempted password cracking. Crowds of this nature
likely would not occur in a closed, commercial CDN, given their
increased security protections. Consequently, with the exception of
Figure 3, our subsequent analysis filters out these crowds and only
considers the remaining 2,501.

3. FLASH CROWD CACHEABILITY

3.1 Caching Challenges
During flash crowds, a CDN often acts as an intermediary between a
large distributed base of clients and a small number of origin servers;
ensuring efficient communication with both of these parties poses
distinct challenges. On the demand side, CDNs need to proportion-
ately distribute thousands of simultaneous requests across a network
of caches. Simultaneously, a CDN must judiciously fetch content
from the origin server(s), being careful to avoid simply relaying the
brunt of the load to the origin.

How large are the flash crowds that CoralCDN observes and how
amenable are they to caching? At the minimum, each unique URL
must be fetched at least once from the origin. Crowds with many
unique URLs—for example, due to different URLs representing
distinct dynamic content—can incur greater origin load. Figure 1
plots the flash crowds analyzed in this study, comparing the number
of unique URLs per crowd (given on the x-axis) with their peak
request rate to CoralCDN (given on the y-axis). If a crowd is identi-
fied under more than one epoch size (per Section 2.2), we record it
multiple times in this analysis. The upper right quadrant of the figure
represents crowds that are both massive in scale and distributed over
large numbers of URLs.

2

103

104

105

 1 10 100 1000 10000

P
ea

k
R

eq
ue

st
 R

at
e

(r
eq

/m
in

)

Unique URLs in Crowd

Highest Load &
Least Cacheable

Figure 1: Size and cacheability of 2,501 flash crowds.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1 10 100 1000

C
um

ul
at

iv
e

F
ra

ct
io

n
of

 C
ro

w
ds

Number of Client Autonomous Systems

X = 10%
X = 50%
X = 95%
X = 99%

Figure 2: AS-level clustering of client requests. Each line plots
a CDF of the number of ASes with clients that generate X% of
crowds’ requests.

3.2 Comparison of Caching Strategies
To minimize origin load and decrease client perceived latency, CDNs
cache content widely across their networks. While they may employ
a variety of caching strategies, one fundamental choice is the degree
to which caches coordinate in fetching origin content. CoralCDN
uses cooperative caching, where proxies discover and fetch con-
tent from other caching proxies, before requesting content from the
origin. CoralCDN uses a distributed hash table for global content
discovery, while earlier cooperative approaches were based on more
static cache hierarchies [2]. In contrast, many commercial CDNs,
including Akamai [7, 9], primarily use non-cooperative caching,
where each remote proxy (or proxy cluster) independently fetches
content from the origin site. A continuum of caching strategy exists
with varying degrees of cache coordination. For clarity of compari-
son, however, we restrict our analysis to these two extremes.

Cooperative caching yields strictly fewer requests to the origin
server than non-cooperative approaches, since all but the first request
for each URL are served from cache. At the same time, cooperation
increases system complexity and adds coordination overhead. In this
section, we evaluate the performance benefit of cooperative caching
in observed crowds. We also identify factors which influence how
much benefit cooperative caching will provide to a particular crowd.

First, the client distribution over proxies plays an important role.
When clients are concentrated at a small number of proxies (perhaps
due to their locality), relatively few distinct caches fetch content
from the origin, diminishing the benefits of cooperation. On the
other hand, crowds distributed over large numbers of caches pose
a higher risk of overloading the origin if caches do not cooperate.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 1 10 100 1000 10000 100000

P
ro

xi
es

 In
vo

lv
ed

 in
 C

ro
w

d

Unique Client IPs in Crowd

Avg # clients / proxy: > 1 > 10 > 100

Figure 3: Number of proxies and clients involved in each flash
crowd. Guide lines plot the curves for 1, 10, 100, and 1000
clients per proxy.

Our crowd traces support the latter scenario—clients are distributed
across many network locations—suggesting that cooperation could
be helpful. To illustrate, Figure 2 shows the clustering of clients
based on network topology. While 20% of crowds have half of their
requests originate from clients within a single Autonomous System
(AS), crowds commonly involve hundreds of ASes. Similarly, many
CoralCDN proxies are involved in serving a crowd, as shown in
Figure 3, and requests are well distributed over them. This unfiltered
figure shows all 3,553 crowds, including those with only a few
clients, likely malicious, accessing large numbers of proxies.

The concentration of a crowd’s URLs can also affect its coop-
erative cacheability. To characterize this less intuitive factor, we
calculate the number of requests seen by each crowd’s origin under
both non-cooperative and ideal cooperative caching (under the latter,
the origin sees a single hit per URL). In this analysis, we make the
simplifying assumption that caches do not evict a crowds’ content
during its lifetime. CoralCDN typically operates at around 300
servers world-wide (spread over around 150 POPs), and the arrival
of clients to each server was drawn directly from actual crowd traces.
Since the distribution of requests amongst caches determines cache
locality, using real request traces is necessary for correct evaluation.

Figure 4 demonstrates that content dynamism (the number of
unique URLs) has a significant impact on the relative benefits of
cache cooperation. The top graph plots the fraction of cache hits
under cooperative and non-cooperative strategies, as a function of
URL distribution. The lower graph plots the difference in these
numbers, highlighting the normalized reduction in origin load under
cooperation. Its shape reveals an interesting pattern: In crowds
with a small number of unique URL’s, cooperative caching provides
relatively little incremental benefit, since each cache retrieves the
critical set of URLs from the origin in a small number of hits. On
the other extreme, crowds with mostly unique URLs—typically
dynamic content differentiated for each client—receive no additional
benefit from cooperative caching. Such crowds are fundamentally
uncacheable, since no URL is ever repeated.

The lower graph in Figure 4 reveals a “sweet spot” for cooperative
caching. In this region, cooperation has the potential to decrease
origin load substantially, often by more than half the size of the
crowd itself. These results suggest that the decision to introduce
cooperation in CDNs should depend on the types of crowds that a
CDN expects to handle. If it is somehow known a priori that crowds
will be concentrated over just a small number of unique objects, then
cooperation is likely unnecessary. Figure 5 illustrates these results
in CDF form: about 30% of crowds see less than a 10% reduction

3

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

10-5 10-4 10-3 10-2 10-1 100

F
ra

ct
io

n
of

 R
eq

ue
st

s
S

er
ve

d
fr

om
 C

ac
he

Unique URLs In Crowd (Normalized)

(Cooperative - Non-Cooperative)
 0

 0.1

 0.2

 0.3

 0.4

 0.5
 0.6

 0.7

 0.8

 0.9

 1

Cooperative Caching
Non-Cooperative Caching

Figure 4: Top: Percentage of request served from cache us-
ing cooperative (dark blue) and non-cooperative (light green)
caching strategies. Bottom: Fractional increase in cache hits
from cache cooperation.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
um

ul
at

iv
e

F
ra

ct
io

n
of

 C
ro

w
ds

Fraction of Origin Hits Reduced by Cooperation

1 min
2 min
5 min

10 min
30 min
60 min

Figure 5: Origin load reduction from cooperation, as a fraction
of total requests, for crowds defined by different epoch lengths.

in origin load, while 20% see between a 20% and 55% reduction
in origin load. Further, slower-building flash crowds saw greater
benefits from cooperative caching.

4. ELASTIC RESOURCE ALLOCATION

During flash crowds, services need to allocate additional resources
to meet surging HTTP traffic. The nature of such allocation depends
on whether the crowd is composed of static or dynamic content.

Crowds for a small number of unique URLs are easily served
from cache. As a result, the primary resource allocation challenge
falls to the CDN, which must direct clients to its wide-area proxies
handling the requested domain (typically during DNS resolution).
CDNs may also (re)allocate additional cache resources to particular
crowds or popular content; to do so, they must observe that existing
proxies are getting overloaded [14].

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000

F
ra

ct
io

n
of

 C
ro

w
ds

 >
 In

cr
ea

se

Largest Minute-over-Minute Increase (req/min)

60 min
30 min
10 min

5 min
2 min
1 min

Figure 6: Complementary CDF of the largest request rate in-
crease between successive minutes, for sets of crowds defined
by different epoch lengths.

The situation is more complex when crowds are for dynamic or
otherwise uncacheable content. In the face of flash crowds, poorly
provisioned services can use fall-back mechanisms to reduce server
functionality (for instance, disabling php execution on a web server).
This approach reduces the computational load per request, but at
the cost of losing personalization, analytics, or other beneficial
services. It also fails to guarantee availability, since servers may be
overwhelmed even under reduced functionality.

A second option is to push the problem of scaling computation
(rather than the normal communication) to the CDN. This approach
is supported by a set of “edge computing” APIs, which allow partial
distribution of application logic to remote cache sites [3]. Unfor-
tunately, not only does such a solution constrain application devel-
opers to a particular set of (non-standardized) service APIs, but it
also fails to address the common situation where application logic
requires back-end communication with a coordinating, more central-
ized database (which also must scale rapidly during crowds).

Only recently has a general-purpose solution arisen to the prob-
lem of scaling a dynamic application. The introduction of elastic
computing platforms, such as Amazon’s EC2, enables web services
to spin-up new resources on demand in multiple global datacenters.
Simultaneously, a litany of scalable back-end datastores—such as
MongoDB, Cassandra, and HBase—scale quickly with the addi-
tion of new hardware resources (which also can be allocated in a
virtualized environment).

Whether the resource allocation is delegated to a CDN or per-
formed in-house using elastic-computing resources, the responsible
service must have adequate time to react: Can such resource allo-
cation be performed fast enough in the face of flash crowds? This
section analyzes the rate of flash crowds and evaluates the efficacy
of dynamic resource allocation.

4.1 Measuring Rate Increases
Figure 6 presents the complementary CDF of the maximal minute-
over-minute increase in request rate observed during each crowd. A
separate CCDF is plotted for each epoch time.

We observe that a handful of crowds experience extremely large
surges in request rates, increasing by tens of thousand of requests
in successive minutes. Further investigation determined that such
volatility is caused by a particular usage scenario: such sites use
HTTP 302 redirects to relay traffic to CoralCDN only during ex-
tremely loaded periods. Such elastic load shedding presents an

4

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 10 20 30 40 50 60 70

R
eq

ue
st

s
pe

r
M

in
ut

e

Time (Minutes)

bostonherald.com

Figure 7: Surging request rates caused by intermittent 302 redi-
rection from The Boston Herald.

attractive proposition for resource-constrained websites: the ability
to use third-party content distribution only when local resources are
oversubscribed. However, it also eliminates the traditional request
build-up that can serve as an “early warning sign” for CDNs.

As an example of such rapid increases, Figure 7 plots the number
of requests per minute to CoralCDN during a flash crowd expe-
rienced by The Boston Herald over roughly one hour. The three
distinct traffic surges (grey background regions) occur just after
the website switches on redirection, likely in response to a local
load-shedding policy. As a result, CoralCDN sees thrashing and
unpredictable request rates.

While instantaneous flash crowds to CoralCDN are still a small
fraction of its total use, they still point to the important concept
of resource elasticity. Under such scenarios, it can be difficult for
CDNs and origins to respond quickly to dramatic load increases.

4.2 Effectiveness of Elastic Scaling
Crowds for static or dynamic content require distinct resource al-
location mechanisms. Using cloud-computing platforms such as
Amazon EC2, origin sites can “spin up” new virtual nodes to handle
increased demand for dynamic or uncacheable content. Alternatively,
CDNs can satisfy request spikes for static content by adapting the
set of proxies handling a particular domain, possibly within seconds.
In either case, the service must measure resource utilization and
determine when to allocate new resources to address flash crowds.

To examine whether either environment can adapt rapidly enough,
we simulated dynamic resource allocation strategies against the
crowd traces. In our experiments, we assume that each proxy or
compute node can handle a fixed request rate. We further consider a
desired utilization ratio across all nodes. Production services often
target an average utilization ratio that is well below 100% to ensure
that spare capacity exists during unpredicted fluctuations in demand.
Lower utilization provides a better hedge against rate increases, at
the price of higher operational cost.

In our simulation, a service begins with a sufficient number of
nodes to handle 5% of the crowd’s peak load at the desired utilization.
After each 10-second interval, during which time the request rate
can increase, the service initializes zero or more new nodes to bring
its utilization below the desired target. There is a delay of d seconds
before a new node can service requests (d = 10, 60, 600). In this
experiment, a service never decreases its number of active nodes.

Our main considerations are how often this simple strategy leaves
the service oversubscribed (that is, more than 100% utilized) and how
sensitive any oversubscription is to the speed of resource allocation.

 0

 0.25

 0.5

 0.75C
um

ul
at

iv
e

F
ra

ct
io

n
of

 C
ro

w
ds

Number of Oversubscribed 10 Second Periods

10%
20%
50%

 0

 0.25

 0.5

 0.75

 1 10 100

C
um

ul
at

iv
e

F
ra

ct
io

n
of

 C
ro

w
ds

Number of Oversubscribed 10 Second Periods

10 second spin-up

0

10%
20%
50%

 0

 0.25

 0.5

 0.75

10%
20%
50%

 0

 0.25

 0.5

 0.75

1 minute spin-up

10%
20%
50%

 0

 0.25

 0.5

 0.75

 1

10%
20%
50%

 0

 0.25

 0.5

 0.75

 1

10 minute spin-up

10%
20%
50%

Figure 8: CDFs of the number of oversubscribed (>100% uti-
lization) periods when resources are dynamically scaled during
flash crowds. Plots differ by the spin-up delay d needed to bring
resources online, each evaluating several target utilizations.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5

C
um

ul
at

iv
e

F
ra

ct
io

n
of

 S
pi

n-
U

ps

VM Spin-Up Time (minutes)

Figure 9: CDF of spin-up times for EC2 virtual instances.

Figure 8 plots a CDF of the number of oversubscribed 10-second
intervals during each experiment (for each of the 2,501 crowds) for
various target utilizations (10%, 20%, and 50%). We find that sub-
minute resource allocation is required to prevent oversubscription
in most flash crowds. For instance, if allocating new VMs requires
ten minutes, 66% of all crowds experience at least one period of
oversubscription, even under the most conservative target of 10%
utilization. While this experiment is highly simplified, it motivates
the need for further study on the effectiveness of resource allocation
policies in the face of load volatility.

To characterize the delay for allocating new resources in the
cloud, we profiled Amazon EC2. Our experiment measured the time
required to spin-up a new VM, repeating the process in three different
datacenter locations each hour over the course of one day (August
31, 2011). Figure 9 plots the CDF of spin-up times observed on
EC2: The majority of instances became available within 1-2 minutes.
Given these delays, avoiding dropped requests for the majority of
observed crowds requires the most aggressive provisioning strategy.

5

Referer # Crowds Referer # Crowds

digg.com 123 facebook.com 10
reddit.com 20 duggmirror.com 8

stumbleupon.com 15 duggback.com 5
google.com 11 twitter.com 4

Figure 10: Domains that are common referrers for crowds.

5. SOURCE ATTRIBUTION

While flash crowds may seem unpredictable and random to service
providers, they are often explained by human factors. The “Slashdot
Effect,” for instance, refers to the spike in popularity witnessed by
sites linked to by the Slashdot website. Increasingly, social networks
are facilitating the viral sharing of links between acquaintances,
which can lead to explosive growth in content popularity. This sec-
tion qualifies the role of third-party portals in creating flash crowds.

5.1 Causal Inference for Source Attribution
We determine the cause of flash crowds through HTTP Referer
headers. The Referer header, when present, indicates that a user has
arrived at a particular URL by means of a link from another URL, or
that the URL represents content embedded in a parent webpage. In
many cases, a complex web of referrers arises when a user accesses
a web page, fetches embedded content, and then further browses
the trending website. We use the set of pair-wise referral links to
reverse-engineer a user’s HTTP session (with referral links that form
a directed acyclic graph). This allows us to attribute their subsequent
traffic to as small a set of originating referrers as possible.

5.2 Effects of Portals, Networks, and Tweets
Figure 10 lists referring domains that contributed heavily and fre-
quently to flash crowds. We consider a domain as a heavy referrer if
it originates more than a third of a crowd’s requests. Well-known
Internet portals, (in)famous for causing flash crowds, top this list.
These findings confirm the perception that online portals are a com-
mon source for flash crowds. The term “Slashdot Effect” may be
a slight misnomer, however: While Coralized URLs were posted
on the Slashdot homepage several times during the trace, very few
generated sufficient traffic to meet our crowd threshold. Still, these
findings are predisposed by user behavior: CoralCDN appears to be
more commonly used by digg readers than those of Slashdot.

Perhaps more surprising is the presence of crowds referred from
Facebook and other social networking sites. Unlike centralized
content portals, these sites disseminate links through social connec-
tions, spreading virally via pairwise, decentralized exchange. A link
posted on Twitter is shared with direct followers, then re-tweeted and
propagated through the social graph, for instance. Recent work [11]
has considered the role of user location in predictively caching con-
tent for such crowds. We confirm that project’s hypothesis that
social-network activity can generate meaningful flash crowds.

A handful of crowds arose with even less explicit coordination:
those whose primary referrer was search traffic from sites such as
Google, Yahoo!, and Bing. These crowds relied on no central portal
or coordinating website, instead growing through some type of out-
of-band communication, e.g., e-mail, word of mouth, etc. Still,
through the “zeitgeist,” search engines generated exponential traffic
increases to particular websites, and ultimately to CoralCDN.

 8000

 0 20 40 60 80 100

R
eq

ue
st

s
pe

r
M

in
ut

e

Time (Minutes)

referrer: digg.com

 1000

referrer: facebook.com

 350

 0 20 40 60 80 100

Time (Minutes)

referrer: twitter.com

 2400

referrer: reddit.com

Figure 11: Referral traces from third parties. Each plots a dis-
tinct crowd, but timing of each surge (grey regions) are aligned.

To illustrate the traffic patterns from a few example crowds, Fig-
ure 11 plots the requests rates from a variety of referring websites,
including social media sites and content portals.

6. RELATED WORK

Several research projects have focused on mitigating the effects
of flash crowds. A number of papers explore the use of peer-to-
peer protocols to cooperatively address traffic surges [5, 10, 12, 13].
Work on request redirection in traditional CDNs has also considered
flash crowds, reallocating demand among back-end proxies during
periods of high load [14]. Still other work has focused on detecting
and pruning flash crowds within local networks, before traffic ever
reaches a bombarded service [1, 8]. None of these studies consider
traces or offer analysis of real flash crowds observed across the
wide area. A notable exception is Jung et al. [6], which draws
conclusions from a small number of flash crowds against a single
web server. That study focuses on distinguishing flash crowd traffic
from denial-of-service attacks, a topic we only briefly address in
this paper. Very recent work has considered using social network
information, such as user location, to determine cache policy during
flash crowds [11]. That work restricts its analysis to user-level
observations of twitter crowds, however, and it lacks information
about the true network location of users and caches. Our analysis
is complementary, profiling the actual distribution of users amongst
caches in an operational CDN and characterizing cache locality
during real crowds.

7. CONCLUSIONS

This paper finds that flash crowds, even when conservatively defined,
are quite commonplace in a popular, open CDN. We initiate the study
of flash-crowd dynamics using logs of several thousand such crowds.
Our measurements show that crowds vary in their amenability to
effective caching, and that cooperation between caching proxies min-
imizes origin load for some crowds, but not all. Further, we find that
some crowds can grow too quickly for dynamic resource allocation
to keep up with demand; cloud-based approaches of spinning up
new VM instances can sometimes fare poorly in preventing oversub-
scription. Finally, we confirm anecdotal evidence that third-party
portals contribute to substantial numbers of crowds, and document
that the sharing of links through social media and the uncoordinated
use of search engines lead to flash crowd formation as well.

Acknowledgments. We thank Stefan Saroiu and Kay Ousterhout for
their helpful comments about this work. This work was supported
by the National Science Foundation under Award CNS-0904860.

6

REFERENCES
[1] P. Barford and D. Plonka. Characteristics of network traffic

flow anomalies. In Proc. Internet Measurement Workshop
(IMW), Nov. 2001.

[2] A. Chankhunthod, P. Danzig, C. Neerdaels, M. Schwartz, and
K. Worrell. A hierarchical Internet object cache. In Proc.
USENIX Annual Technical Conference, Jan. 1996.

[3] A. Davis, J. Parikh, and W. E. Weihl. EdgeComputing: Ex-
tending enterprise applications to the edge of the Internet. In
Proc. World Wide Web Conference (WWW), May 2004.

[4] M. J. Freedman. Experiences with CoralCDN: A five-year
operational view. In Proc. Networked Systems Design and
Implementation (NSDI), Apr. 2010.

[5] M. J. Freedman, E. Freudenthal, and D. Mazières. Democ-
ratizing content publication with Coral. In Proc. Networked
Systems Design and Implementation (NSDI), Mar. 2004.

[6] J. Jung, B. Krishnamurthy, and M. Rabinovich. Flash crowds
and Denial of Service attacks: Characterization and impli-
cations for CDNs and web sites. In Proc. World Wide Web
Conference (WWW), May 2002.

[7] B. Maggs. Personal communication, 2009.

[8] R. Mahajan, S. M. Bellovin, S. Floyd, J. Ioannidis, V. Paxson,
and S. Shenker. Controlling high bandwidth aggregates in the
network. Computer Communications Review, 32(3), July 2002.

[9] E. Nygren, R. K. Sitaraman, and J. Sun. The Akamai net-
work: A platform for high-performance Internet applications.
SIGOPS Operating Systems Review, 44, Aug. 2010.

[10] V. N. Padmanabhan and K. Sripanidkulchai. The case for
cooperative networking. In Proc. Intl. Workshop on Peer-to-
Peer Systems (IPTPS), Mar. 2002.

[11] S. Scellato, C. Mascolo, M. Musolesi, and J. Crowcroft. Track
globally, deliver locally: Improving content delivery networks
by tracking geographic social cascades. In Proc. World Wide
Web Conference (WWW), Mar. 2011.

[12] S. Shakkottai and R. Johari. Demand-aware content distribu-
tion on the Internet. IEEE/ACM Trans. Networking, 18(2), Apr.
2010.

[13] T. Stading, P. Maniatis, and M. Baker. Peer-to-peer caching
schemes to address flash crowds. In Proc. Intl. Workshop on
Peer-to-Peer Systems (IPTPS), Mar. 2002.

[14] L. Wang, V. Pai, and L. Peterson. The effectiveness of request
redirection on CDN robustness. SIGOPS Operating Systems
Review, 36, Dec. 2002.

7

	Introduction
	4 Years of Data from CoralCDN

	Defining Flash Crowds
	Defining Flash Crowds
	Request Rate Epochs and Crowd Speed

	Flash Crowd Cacheability
	Caching Challenges
	Comparison of Caching Strategies

	Elastic Resource Allocation
	Measuring Rate Increases
	Effectiveness of Elastic Scaling

	Source Attribution
	Causal Inference for Source Attribution
	Effects of Portals, Networks, and Tweets

	Related Work
	Conclusions

