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ABSTRACT

Combining and analyzing data collected at multiple logaids
critical for a wide variety of applications, such as detegtand
diagnosing malicious attacks or computing an accuratenasi of
the popularity of Web sites. However, legitimate concerbsua
privacy often inhibit participation in collaborative dagaalysis

systems. In this paper, we design, implement, and evaluate a

practical solution for privacy-preserving collaboratiamong a
large number of participants. Scalability is achieved tigio a
“semi-centralized” architecture that divides resporiibbetween
aproxythat obliviously blinds the client inputs anddatabasethat
identifies the (blinded) keywords that have values satigfygome
evaluation function.

Our solution leverages a novel cryptographic protocol phat-

ably protects the privacy of both the participants and thg- ke

words. For example, if web servers collaborate to detectcgou
IP addresses responsible for denial-of-service attackgmtocol

would not reveal the traffic mix of the Web servers or the iden-
tity of the “good” IP addresses. We implemented a prototype o

our design, including an amortized oblivious transfer pcot that
substantially improves the efficiency of client-proxy iraetions.

Our experiments show that the performance of our systenescal

linearly with computing resources, making it easy to imgrper-
formance by adding more cores or machines. For collaberdiiv
agnosis of denial-of-service attacks, our system can banillions

of suspect IP addresses per hour when the proxy and the databa

each run on two quad-core machines.

1. INTRODUCTION

Many important data-analysis applications must combing an

analyze data collected by multiple parties. Such disteétudata
analysis is particularly important in the context of segurfror ex-
ample, victims of denial-of-service (DoS) attacks knowythave
been attacked but cannot easily distinguish the maliciousce IP

Today, these kinds of distributed data-analysis appboatiack
privacy protections. Existing solutions often rely on astad (typ-
ically centralized) aggregation node that collects andyaea the
raw data, thereby learning both the identity and inputs ofiga
pants. There is good reason to believe this inhibits paetadn.
ISPs and Web sites are notoriously unwilling to share ofmerak
data with one another, because they are business comsetitdr
are concerned about compromising the privacy of their coste.
Many users are understandably unwilling to install sofeveiom
Web analytics services such as Alexa [1], as such softwarddvo
otherwise track and report every Web site they visit. Unfioately,
even good intentions do not necessarily translate to goouarisg
and privacy protections, only too-well demonstrated by finet
that large-scale data breaches have become commonpldcé&$30
such, we believe that many useful distributed data-arsbyspli-
cations will not gain serious traction unless privacy caehsured.

Fortunately, many of these collaborative data-analysisics
tions have a common pattern, such as computing set intemsgct
finding so-calledicebergs(items with a frequency count above a
certain threshold), or identifying items that in aggregsasgisfy
some other statistical property. We refer to this problemprascy-
preserving data aggregatio(PDA). Namely, each participant;
has an input set of key-value tupleS;;, v ;), and the protocol
outputs a keyk; if and only if some evaluation functiofi(¥j|v;,; )
is satisfied. For example, the botnet anomaly-detectioficapion
is an instance of the iceberg problem where the goal is tactlete
keys that occur more than some thresholimes across the par-
ties. In this scenario, the keys refer to IP addresses, each value
v;,j is 1, andf is defined to b&~7_, vi; > 7 (implemented, in
fact, as simply keeping a running sum per key). In other words
such a protocol performs the equivalent of a database joiioii)
across each participant’s input (multi)set, and outputse¢hP ad-
dresses that appear more thatimes. In our system, keys can
either be arbitrary-length bitstrings or can also be dravamfa
limited domain é.g, the set of valid IP addresses). However, we

addresses from the good users who happened to send legitimat restrict our consideration of values to those drawn from seme-
requests at the same time. Since compromised hosts in at botnestricted domain—such as an alphanumeric score from 1 to 20 or

often participate in multiple such attacks, victims coutdemtially
identify the bad IP addresses if they combined their measemne
data [34]. Cooperation is also useful for Web clients to getze

they have received a bogus DNS response or a forged sebesign

certificate, by checking that the information they receiegees

with that seen by other clients accessing the same Web e [2

39]. Collaboration is also useful to identify popular Wentant
by having Web users—or proxies monitoring traffic for an enti
organization—combine their access logs to determine the fres

quently accessed URLs [1]. In this paper, we present theydesi

implementation, and evaluation of an efficient, privacgsarving
system that supports these kinds of data-analysis opesatio

to F—a limitation for privacy reasons we explain later. Thisould
as easily perform other types of frequency analysis on lsy) as
median, mode, or dynamically setting the thresholthsed on the
set of inputs—for example, if there exists some appropfigap”
between popular and unpopular inputs—as opposed to requiri
be seta priori and independent of the inputs.

Informally, PDA should provide two privacy properties: K8y-
word privacyrequires that no party should learn anything abigut
if its corresponding values do not satisfy (2) Participant privacy
requires that no party should learn which key inputs (whetheot
the key remains somehow blinded prior to satisfyjf)doelongs to



which participant. In our example of collaborating DoS wit,
keyword privacy means nobody learns the identity of gooddP a
dresses or which Web sites they frequent, and participavaqgy

spite these simplifications, the cryptographic protocelsassary to
provide strong privacy guarantees are still non-trivigdeS&fically,
our solution makes use of oblivious pseudorandom functi2is

means a Web site need not worry that its mix of clients would be 10, 16], amortized oblivious transfer [26, 17], and homopiniz

revealed. In our example of collaborating Web clients, ttieagy

guarantees mean that a Web user need not worry that other user

encryption with re-randomization.
We formally prove that our system guarantees keyword and par

know what Web sites he accesses, or whether he received a bodicipant privacy. We first show a protocol that is robust i th

gus DNS response or a forged certificate. We believe thegacyri
properties would be sufficient to encourage participanisottab-

orate to their mutual benefit, without concern that theivaumy (or

the privacy of their clients) would be compromised. Our gtian,

is to design a system that provably guarantees these piepenet

is efficient enough to be used in practice.

Ideally, we would like a system that can handle hundredsar-th
sands of participants generating thousands of key-vajleguUn-
fortunately, fully-distributed solutions do not scale ivehough,
and fully-centralized solutions do not meet our privacyuiegt
ments. Simple techniques like hashing input keys [12, 2]Jilevh
efficient, cannot ensure keyword and participant privaecy.cdn-
trast, the secure multi-party computation protocols frown dryp-
tographic literature [42, 9, 25, 21, 11, 10, 20, 23, 3] wouldva
us to achieve our security goals, but are not practical astiaée
we have in mind. [40] has a similar intent to our work, but pro-
vides much weaker privacy propertiesd, keys are known by the
system) and was not evaluated in a distributed setting.Iiifiew
of these systems have ever been implemented [23, 13, 3]olet a
operate in the real world [4] and at scale. So, a meta-goalof o
work is to help bring multi-party computation to life.

In this paper, walesign, implement, and evaluageviable al-
ternative: a “semi-centralized” system architecture, assbciated
cryptographic protocols, that provides privacy-presgguvilata ag-
gregation without sacrificing efficiency. Rather than hgvinsin-
gle aggregator node, the data analysis is split between épa-s
rate parties—aroxy and adatabase The proxy plays the role of
obliviously blinding client inputs, as well as transmigiblinded
inputs to the database. The database, on the other hands lauil
table that is indexed by the blinded key. For each row of tais t
ble whose values satisfy, the database shares this row with the
proxy, who unblinds the key. The database subsequentlysheisl
its non-blinded data for that key.

The resulting semi-centralized system provides strongapyi
guaranteeprovided that the proxy and the database do not col-
lude In practice, we imagine that these two components will be
managed either by the participants themselves that do rebt toi
see their own information leaked to others, perhaps evenron a
tating basis, or even third-party commercial or non-prafiitees
tasked with providing such functionality. For example, lie tase
of cooperative DoS detection, ISPs like AT&T and Sprint cbul
jointly provide the service. Or, perhaps even better, ild¢de of-
fered by third-party entities like Google (which alreadsys a role
in bot and malware detection [15]) or the EFF (which has fande
anonymity tools such as Tor [7]), who have no incentive to col
lude. Such a separation of trust appears in several crygpbgr
protocols [6], and even in some natural real-world scesasach
as Democrats and Republicans jointly comprising electioards
in the U.S. political system. It should be emphasized traptioxy
and database are not treatedrasted partieswe only assume that
they will not collude. Indeed, jumping ahead, our protoamslnot
reveal sensitive information to either party.

Using a semi-centralized architecture greatly reducesatipeal
complexity and simplifies the liveness assumptions of ttetesy.
For example, clients can asynchronously provide their aye
tuples without our system requiring any complex schedulibg-

honest-but-curiousnodel (where, informally, each party can per-
form local computation on its own view in an attempt to break p
vacy, but still faithfully follows the protocol). Then, wéiew how,
with a few modifications to our original protocol, to deferghanst
any coalition of malicious participantsin addition, the protocols
are robust in the face of collusion between either proxwploiase
and any number of participants.

The remainder of the paper is organized as follows. Sectats: 2
fines our system goals and discusses why prior techniquesoare
sufficient. Section 3 describes our PDA protocols and slkstthe
proofs of their privacy guarantees. Section 4 describesnopie-
mentation, and Section 5 evaluates its performance. Weumac
the paper in Section 6.

2. DESIGN GOALS AND STATUS QUO

This section defines our goals for practical, large-scaleapy-
preserving data aggregation (PDA), and we discuss how prar
posals failed to meet these requirements. We then expandron o
security assumptions and privacy definitions.

2.1 Design Goals

In the privacy-preserving data aggregation (PDA) problaegl-
lection of participants (oclient§ may autonomously make obser-
vations aboutalues(v;) associated withkeys(k;). These observa-
tions may be, for example, the fact that an IP address is stespe
to have performed some type of attack (through DoS, sparshphi
ing, and so forth), or the number of participants that asgeca
particular credential with a server. The system jointly poes a
two-column input tabld. The first column ofT is a set comprised
of all unique keys belonging to all participants (tkey columin
The second column is comprised of a valtlg;] that is the aggre-
gation or union of all participant’s values fér (thevalue columin
The system then defines a particular functjoio be evaluated over
each row’s value(s). For simplicity, we focus our discussia the
simple problem of over-threshold set intersection foilf clients’
inputs of the form(k;, 1) are aggregated aSk;] < T[ki] + 1, is
Tlki] > 7?2

A practical PDA system should provide the following:

e Keyword privacy:We say a system satisfiksyword privacy
if, given the above aggregated tafile at the conclusion of
the protocol all involved parties learn only the kéysvhose
corresponding aggregate valli¢k;] > 7. In addition, we
might also have parties learn the valueg:;], i.e.,, the en-
tire value column ofT, even if the corresponding keys re-
main unknown. We discuss later why we may reveal the
keyless value column (a histogram of frequencies in the-over
threshold set intersection example) in addition to thoss-ov
threshold keys.

e Participant privacy: We say a system satisfigarticipant
privacyif, at the conclusion of the protocol, nobody can learn
the inputs{(k;, v; ;) } of participantp; other thamp, himself
(except for information which is trivially deduced from the
output of the function). This is formally captured by shogiin
that the protocol leaks no more information than an ideal im-
plementation that uses a trusted third party. This conwanti



is standard in secure multi-party computation; furtheaet
can be found in [14].

Efficiency: The system should scale to large numbers of par-
ticipants, each generating and inputting large number$&-of o
servations (key-value tuples). The system should be dealab
both in terms of the network bandwidth consumed (com-
munication complexity) and the computational resources
needed to execute the PDA (computational complexity).

Flexibility: There are a variety of computations one might
wish to perform over each key’s valugsk;], other than the
sum-over-threshold test. These may include finding the max-
imum value for a given key, or checking if the median of a
row exceeds a threshold. Rather than design a new protocol
for each functionf, we prefer to have a single protocol that
works for a wide range of functions.

Lack of coordination: Finally, the system should operate
without requiring that all participants coordinate thdfoes

circuit. Very recently, the Fairplay system [23, 3] prowida high-
level programming language for automatically compilingafied
functions down into garbled circuits and generating nekwooto-
col handlers to execute them. While such a system would geovi
the privacy properties we require and offer the flexibilltat hand-
crafted set-intersection protocols lack, this comes atsa cthese
protocols are even more expensive in both computation and co
munication, requiring careful coordination as well.

Hashing Inputs. Rather than building fully decentralized
protocols—with the coordination complexity and quadrater-
head (inn) this entails—we could aggregate data and compute re-
sults using a centralized server. One approach is to simgplg h
clients first hash their keys before submitting them to theese
(e.g, using SHA-256), so that a server only séégk;), notk; it-
self [2]. While it may be difficult to find a pre-image of a hash
function, brute force attacks are still always possiblenim col-
laborating intrusion detection application, for instareserver can
simply compute the hash values of all four billion IP addessand
build a simple lookup table. Thus, while certainly efficietitis

to jointly execute some protocol at the same time, or even approach fails to achieve either of our privacy propertias. al-
all be online around the same time. Furthermore, no set of ternative that prevents such a brute-force attack wouldobelf

participants should be able to prevent others from exegutin participants (clients) to coordinate and jointly agree ome secret

the protocol and computing their own resulte( a liveness
property).

As we discuss next, existing approaches fail to satisfy amaare
of these goals.

2.2 Limitations of Existing Approaches

Having defined these five goals for PDA, we next consider sev-
eral possible solutions from the literature. We see thairpse-
cure multi-party computation protocols achieve stronggmy at
the cost of efficiency, flexibility, or ease of coordinatio®n the
other hand, simple hashing or network-layer anonymizagipn
proaches fail to satisfy our privacy requirements. Our quot,
which leverages insights from both approaches, combirebekt
of both worlds. Table 1 summarizes the discussion in thisaec

Set-Intersection Protocols.  Freedmanet al. [11] proposed

a specially-designed secure multi-party computation quait to
compute set intersection between the input lists of twoigmrtlt
represented each party’s inputs as the roots of an encrypigd
nomial, and then had the other party evaluate this encryméd
nomial on each of its own inputs. While asymptotically opted

for this setting, a careful protocol implementation fouma tsets

of 100 items each took 213 seconds to execute (on a 3 GHz Intel
machine) [13]. Kissner and Song [20] extended and further im
proved this polynomial-based protocol for a multi-partgeletral-
ized setting, yet their computational complexity remaing:¢?)
and communication complexity i©(n>¢), wheren is the num-
ber of participants andis the number of input elements per party.
Furthermore, after a number of pairwise interactions betwear-
ticipants, the system needed to coordinate a group deorypto-
tocol between all parties. Hence, this prior work on segisgection
faces scaling challenges on large sets of inputs or paatitsp and

it also requires new protocol design for each small varidrthe
set-intersection or threshold set-intersection protocol

Secure Multi-Party Computations using Garbled Circuits. In
1982, Yao [42] proposed a general technique for computing an
two-party computation privately, by building a “garbledaiit” in
which one party encodes the function to be executed and his ow
input, and the other party obliviously evaluates her inmrtghis

key s, then use insteadkeyedpseudorandom function on the input
key,i.e., Fs(k;). This would satisfy keyword privacy, until a single
client decides to sharewith the server, a brittle condition for sure.

Network Anonymization through Proxying.  In the previous
proposal, the server received inputs directly from client$us,
the server was always able to associate a row of the databtse w
a particular client, whether or not its key is known. One 8ofu
would be to simply proxy a client’s request through one or enor
intermediate proxies that hides the client’s identigyg( its own

IP address), as done in onion routing systems such as ToOf7].
course, this solution still does not achieve keyword prvac

Although the prior approaches have their limitations, théso
offer important insights that inform our design. First, armo
centralized aggregation architecture avoids distribatextdination
and communication overhead. Second, proxying can addcparti
ipant privacy when interacting with a server. And third, yée
pseudorandom function (PRF) can provide keyword privacywN
the final insight to our design isather than have all participants
jointly agree on the PRF secrat let it be chosen by and remain
known only to the proxy After all, the proxy is already trusted
not to expose a client’s identity to the server (database)ets
trust it not to expose this secretto the database as well. Thus,
prior to proxying (roughly) the tupléFs(k;), v;), the proxy exe-
cutes a protocol with a client taind its input keyk; with F. This
blinding occurs in such a way that the client does not leaamd
the proxy does not learh;.! This completes the loop, having a
proxy play a role in providing both keyword and participanit p
vacy, while the database offers flexibility in any compuiatover
a key’s valuesT [k;] and scalability through traditional replication
and data-partitioning techniques.g, consistent hashing [19]).

2.3 Security Assumptions and Definitions

We now motivate and clarify some design decisions related to
our security assumptions and privacy definitions. Roughbak-
ing, our final protocol defends againsialicious participantsand
non-colludinghonest-but-curiouslatabases and proxies.

!We note that oblivious pseudorandom function evaluatiod ha
been previously used in the set intersection context indh@][16].



Keyword | Participant Lack of
Approach Privacy Privacy Efficiency | Flexibility | Coordination
Private Set Intersection Yes Yes Poor No No
Garbled-Circuit Evaluation Yes Yes Very Poor Yes No
Hashing Inputs No No Very Good Yes Yes
Network Anonymization No Yes Very Good Yes Yes
This paper Yes Yes Good Yes Yes

Table 1: Comparison of proposed schemes for privacy-preseing data aggregation

Honest-but-curious parties.  In our model, both proxy and
database are expected to acthamest-but-curiougalso called
semi-honestparticipants. That is, each party can perform local
computation on its own view in an attempt to break privacy, bu
is assumed to still faithfully follow the protocol when inéeting
with other parties. We believe this model is very appropriatr
our semi-centralized system architecture. In many depéoyis)

the database and proxy may be well-known and trusted to act onanomalous behavior; the very reason data operators likplay

their good intentions to the best of their abilities, as g@ubto sim-
ply another participant amongst a set of mutually distrigtir-
ties. Thus, other than fully compromising a server-side ponent
and secretly replacing it with an actively malicious instandata
breaches are not possible in this model, as participantsr rsae
privacy-comprising data in the first place. In addition, bumest-
but-curious model is one of the two standard security motfels
multi-party computation protocols—the other being thev{obsly
stronger) assumption of full malicious behavior. Unfostely, se-
curity against fully malicious behavior comes at a great,cas
each party needs to prove at each step of the protocol tisdtit-
fully obeying it. For example, the proxy would need to prokatt
it does not omit any submitted inputs while proxying, noséy
open blinded keys at the end of the protocol; the databasédwou
need to prove that it faithfully aggregates submitted \&lwend
doesn’t omit any rows ifT that satisfyf. These proofs, typically
done in zero-knowledge, greatly complicate the protocal iam
pact efficiency.

We will, however, present a protocol that is robust againgt a
coalition of malicious participants After all, the same trust as-
sumptions that hold for the proxy and database does notaxten
the potentially large number of participants.

Security against coalitions. Another important aspect of secu-
rity is the ability to preserve privacy even when severalessarial
players try to break security by sharing the informatiorythained
during the protocol. In this aspect, we insist on providiegigity
against any coalition of an arbitrary number of particigangether
with the database. This is essential as otherwise the dagataan
perform a Sybil attack [8]i.e., create many dummy participants
and use their views, together with his own view, to reveabime
information. Similarly, we require security against anglition of
the proxy and the participants. On the other hand, in ordbate
an efficient and scalable system, we are willing to tolerataera-
bility against a coalition of the database and the proxyciicould
otherwise break participant and keyword privacy.

Releasing the value column. Our protocol releases those keys
whose values satisff, but the database also learns the entire value
column (T[k;], Vi), even though it learns no additional information
about the correspondinig’s. This asymmetric design was chosen
as revealing all'[k;] may be seen as a privacy violation.

That said, in other settings it may be acceptable to reldase t
entire value column, so that all parties see identical imfatron.
This also serve another practical purpose, as it may be bdutly

specify f a priori to collecting clients’ inputs. For example, how
should an anomaly detection system choose the approprite f
quency threshold? In some attacks, 10 observations about a par-
ticular IP address may be high.§, suspected phishing), while in
others, 1000 observations may be necessayy, for bots partici-
pating in multiple DoS attacks). Furthermore, a dataset nzy-
rally expose a clear gap between frequency counts of nornthl a
with raw data in the first place.

We also note that the acceptable set of input values and the sy
tem’s security assumptions has some bearing here. If thaitom
D of possible values is large, a client can try to “mark” a key
by submitting it together with an uncommon valuec D. If a
value column that somehow includesis revealed, the client can
discover other clients’ values for that same key. That sagmi-
lar problem exists when the value column is not released aadso
concerned about collusions between a client and databdsec@n
search for theTl [k] that includesw). This problem does not arise
when the domain is relatively smak.g, when values are grades
over some limited scale).

We mention that this asymmetry and/or security issue can be
completely eliminated by first having participants enciyyeir val-
ues under the public keys of both proxy and database, anceoy th
using additional cryptographic protocols for the aggregaof the
values. While these tools are relatively expensive, thecsire of
our system allows us to employ them only for the two-partyecas
(for the proxy and database) which results in a significéitiehcy
improvement over other more distributed solutions.

3. OUR PDA PROTOCOL

In this section, we describe our protocol and analyze itsi-sec
rity. Section 3.1 describes a simplified version of the protahat
achieves somewhat weaker security properties. This vessilh
be extended to support a stronger notion of security in Se&i2.
Our protocol employs several standard cryptographic téelg,
public-key encryption schemes, pseudorandom functiams,tlae
oblivious evaluation of a pseudorandom function). We wliie
orate on these tools and suggest concrete instantiatio®edn
tion 3.3. More details about the extended protocol and bkstc
of formal security proofs are given in the Appendix.

3.1 The Basic Protocol

Our protocol consists of four basic steps (see Figure 1)hén t
first two steps, the proxy interacts with the participantsdbfect
the blinded keys together with their associated valuesypied
under the database’s public-key, and then passes thesgttr
values on to the database. Then, in the third step, the DBeaggr
gates the blinded keys together with the associated vatetable
and decides which rows should be revealed according to &pred
fined functionf. Finally, the DB asks the proxy to unblind the cor-
responding keys. Since the blinding schefeis not necessarily
invertible, the revealing mechanism uses some additiori@atrna-
tion that is sent during the first phase.



0. Participant 1. Proxy learns

has input k Eps(F,(k)),
EDB(EPRX(k))
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Participant Proxy
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4. Proxy recovers
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Figure 1: High-level system architecture and protocol.Fs is a keyed hash function whose secret keyis known only to the proxy.

e Parties: Participants, Proxy, Database.

e Cryptographic Primitives: A pseudorandom functiod’,
whereF(k;) denotes the value of the function on the input
k; with a keys. A public-key encryptionZ, where Fx (x)
denotes an encryption efunder the public key K.

e Public Inputs: The proxy’s public keyprx, the database’s
public keyDB.

e Private Inputs. Participant: A list of key-value pairs
(ki,v;). Proxy: key s of PRF F' and secret key foPRX;
Database:secret key foDB.

1. Each participant interacts with the proxy as follows. &ach
entry (k;,v;) in the participant’s list, the participant and the
proxy run a sub-protocol for oblivious evaluation of the PRF
(OPRF). At the end of this protocol, the proxy learns nothing
and the participant learns only the valbig(k;) (and nothing
else, not even the key of the PRF). The participant com-
putes the value&ps (Fs(k:)), Eos(vi), and Eps (Eprx(k:)),
and it sends them to the proxy. (The last entry will be used
during the revealing phase.) The proxy adds this triple to a
list and waits until most/all participants send their irgut

2. The proxy randomly permutes the list of triples and sends
the result to the DB. The DB uses its private key to decrypt
all the entries of each triple. Now, it holds a list of triples

of the form <Fs(k:i),vi,Epr(k:i)>. The DB inserts these

values into a table which is indexed by the (blinded) key
Fs(k;). Atthe end, the DB has a table of entries of the form

<Fs(ki), Tlk], E[k:i]>, whereT|k;] is (in general) a list of
all thew;’s that appeared with this key (or simply the number

of times a client inputted; in the case of threshold set inter-
section), andE|[k;] is a list of values of the fornkprx (k).

3. The DB uses some predefined functipio partition the ta-
ble into two partsR, which consists of the rows whose keys
should be revealed, arttl which consists of the rows whose
keys should remain hidden. Then, it sends all the ronR of
to the proxy.

4. The proxy goes over the received taBland replaces all the
encryptedErrx(k:) entries with their decrypted key. Then
it publishes the updated table.

Variants. One may consider several variants in which different
information is released to the participants by the databd3er
example, it is possible to release only teysk; which are cho-
sen by the functiory without the corresponding valudgk;]. On
the other extreme, the DB can release more data by publisheng
pairs (k;, T[k;]) for the k;'s that are selected by, together with
the valuesT|[k;] of the keys that were not selected lfiywithout

the corresponding keys€., the entriesT [k;] of the tableH). This
might be useful to the participants and, in some scenatiesad-
ditional information might not constitute a privacy vidkat (in the
“real-world” sense). Consider, for example, the case wieeal-
ues are always onég., the participants only want to increment a
counter for some key. In this case, the taBlsimply consists of
keys and their frequencies, ahids simply a frequency table of all
the unrevealed keys.

Security Guarantees. We claim that this protocol guarantees
privacy against the following attacks:

Coalition of honest-but-curious participants. Consider the view
of an honest-but-curious participant during the protoBale to the
security of the OPRF sub-protocol, a single participant sady
a list of pseudorandom values of the fod(k;), and therefore
it learns nothing beyond the output of the protocol (foryathis
view can be easily simulated by using truly random valued)e T
same holds for a coalition of participants.

In fact, this protocol achieves a reasonable level of sgcuri
against malicious participants as well. Recall that theraxttion of
the proxy with a participant is completeilydependenof the inputs
of other participants. Hence, even if the participants aaégious,
they still learn nothing about the data of other honest pigsnts.
Furthermore, even malicious participants will be forceatoose
their inputsindependentlpf the inputs of other honest participants.
For example, they cannot duplicate the input of some othar ho
est participant. (Similar security definitions were alsosidered
in [26, 16].) However, malicious participants can still kite the
correctnesf the above protocol. This issue will be fixed in the
extended protocol.

Honest-but-curious proxy. The proxy’s view consists of three
parts: (1) the view during the execution of the OPRF protesbiis
gives no information due to the security of the OPRF; (2) thets
that the participants send—these values are encrypted tinele
DB’s key and therefore reveal no information to the proxyd &8)
the values that the DB sends during the last stage of thequito
these are just key-value pairs (encrypted under the prdsys
that should be revealed anyway, and thus they give no addltio
information beyond the actual output of the protocol.

Honest-but-curious coalition of proxy and participants. The
above argument generalizes to the case where the proxydesliu
with honest-but-curious participants. Indeed, the joiatwof such
coalition reveals nothing about the inputs of the honegigpants.

Honest-but-curious databaseThe DB sees a blinded list of keys
encrypted under his public keys, without being able to relate the
blinded entries to their owners. For each blinded E&yk; ), the
DB also sees the list of its associated valti¢s;] and encryptions
of the keys under the proxy’s kelrrx(k). Finally, the DB also



sees the output of the protocol. The vald€$k; ) andEerx(k) bear

no information due to the security of the PRF and the enaoppti
scheme. Hence, the DB learns nothing but the value tableeof th
inputs {.e., the T[k;]'s for all k;’s).?

3.2 The Full-Fledged Protocol

In the following, we describe how to immunize the basic pcoto
against stronger attacks.

Honest-but-curious coalition of participants and databag. A
careful examination of the previous protocol shows thas itul-
nerable against such coalitions for two main reasons.

First, a participant knows the blinded versidh(k;) of its own
keysk;, and, in addition, the DB can associate all the vallfgs]
to their blinded keyds (k;). Hence, a coalition of a participant and
a DB can retrieve all the valuggk;] that are associated with a key
k; that the participant holds, even if this kefgould not be revealed
according tof. To fix this problem, we modify the first step of the
protocol. Instead of using an OPRF protocol, we will use fedit
sub-protocol in which the participant learns nothing arel ghoxy
learns the valué’ys (Fs(k;)) for eachk;. This solves the problem
as now that participant himself does not know the blindediver
of his own keys. To the best of our knowledge, this version of
encrypted-OPRF protocol (abbreviated EOPRF) has not apgea
in the literature before. Fortunately, we are able to caicssuch a
protocol by carefully modifying the OPRF construction o®]and
combining it with EI-Gamal encryption (see Section 3.3).

Second, we should eliminate subliminal channels, as thase c
be used by participants and the database to match the keymof a
ticipant to their blinded versions (that were forwardechi DB by
the proxy). Indeed, public-key encryption schemes usemamneéss
(in addition to the public key) to encrypt a message, andrtuis
domness can be used as a subliminal channel. To solve this pro
lem, we use an encryption scheme that supports re-randtomiza
of ciphertexts; that is, given an encryptionaofvith randomness,
it should be possible to recompute an encryptiony einder fresh
randomnes$’ (without knowing the private key). Now we elimi-
nate the subliminal channel by asking the proxy to re-raridete
Clphel’textS—EDB (F‘s(kl)), EDB (UL), and EDB (Epr(kz))—WhK:h
are encrypted under the DB’s public key (at Step 1). Furtioeem
we should be able to re-randomize theernal ciphertextEerx (k)
of the last entry as well (we will show that this can be achieve
through variant of EI-Gamal encryption).

A coalition of malicious participants. As we already observed,
malicious participants can violate the correctness of oatgeol.
Specifically, they might try to submit ill-formed inputs. &4l that
the participant sends to the proxy triplgs b, ¢), where in an hon-
est execution we have = Eog(Fs(ki)),b = Eps(v;) andc =
Eos(Errx(ks)) for somek; andv;. However, a cheating participant
might provide an inconsistent tuple, in whieh= Eog(F(ki))
while ¢ = Eps(Frrx(k;)) for somek; # k;. We can prevent such
an attack by asking the proxy to apply a consistency chedk to
in the last step of the protocol and to make sure fiak (k;) and
Fs(k;) match. The proxy omits all the inconstant values (if there
are any) and asks the DB to check again if the corresponding ro
should be revealed after the omission. (This modificatidficas
as long as the functiorf is local, i.e,, it is applied to each row
separately. See appendix for more details.)

Another thing that a cheating participant might do is to aepl

2Formally, we define a functionality in which this additioriat
formation is given to the database as part of its output. Bee t
appendix for details.

b with some “garbage” valu¥ = Eys(v”) for which he does not
know the plaintext’ (while this might not seem to be beneficial
in practice, we must prevent such an attack in order to meet ou
strong definitions of security). To prevent such attack, slethe
participant to provide a zero-knowledge proof that shovet tre
knows the plaintext to which thath decrypts. As seen in the next
section, this does not add too much overhead.

Finally, our sub-protocol for the EOPRF should be securenaga
malicious participants in the following sense: a malicipastici-
pant should not be able to generate a blinded vafug( Fs(k:))
for a keyk; that he does not know.

In the appendix, we show that our modifications guarantde ful
security against malicious participants.

3.3 Concrete Instantiation of the Crypto-
graphic Primitives
In the following section, we assume that the input keys gpe re
resented byn-bit strings. We assume that is not very large€.g,
less than 192-256); otherwise, one can hash the input kelyapmn
ply the protocol to resulting hashed values.

Public Parameters. Our implementation mostly employs
Discrete-Log based schemes. In the followipds a generator of
a multiplicative groupG of prime orderp for which the decisional
Diffie-Hellman (DDH) assumption holds. We publif, p) during
initialization and assume the existence of algorithms faitipli-
cation (and thus also for exponentiation)@ We letZ, denote
the field of integers modulp, the set{0, 1, ..., p — 1} with mul-
tiplication and addition modulp. We will let Z;, denote the multi-
plicative group of the invertible elemerits,.

El-Gamal Encryption. We will use EI-Gamal encryption over
the groupG. The private key is a random elementfrom Z;,
and the public key is the paly, h = g). To encrypt a message
r € G, we choose a randotnfrom Z; and computég®, - h").
To decrypt the ciphertextA, B), computeB/A* = B - A™¢
(where —a is the additive inverse of in Z,). In case we wish
to “double-encrypt” a message € G under two different public-
keys (g, h) and (g, k"), we will choose a randorh from Z;, and
compute(g®, z - (h - h')?). This ciphertext as well as standard ci-
phertexts can be re-randomized by multiplying the firstye(resp.

second entry) b)qb/ (resp.hb/) whereb’ is chosen randomly from
Zy,. Finally, a zero-knowledge proof for knowing the decryptio
of a given ciphertext is described in [36]. The scheme adtis®n
exponentiations and does not increase the overall rounglesity
as it can be applied in parallel to the EOPRF protocol.

Naor-Reingold PRF [27].  The key s of the function F
{0,1}" — G containsm values(si, ..., s, ) chosen randomly
from Z,. Givenm-bit stringk = 1 ... xzm, the value ofFs (k) is
gnwzl ®i, where the exponentiation is computed in the grGup
Oblivious-Transfer [31, 26]. To implement the sub protocol of
Step 1, we will need an additional cryptographic tool calBdaiv-
ious Transfer (OT). In an OT protocol, we have two partiesdse
and receiver. The sender holds two striigs3), and the receiver
has a selection bit Atthe end of the protocol, the receiver learns a
singlestring: « if ¢ = 0, andg if ¢ = 1. The sender learns nothing
(in particular, it does not know the value of the selecor

3.3.1 The Encrypted-OPRF protocol

Our construction is inspired by a protocol for oblivious lexza
tion of the PRFF, which is explicit in [10] and implicit in [25, 26].
We believe that this construction might have further aggians.



e Parties: Participant, Proxy.

e Inputs. Participant: m-bit stringk = (z1...zm); Proxy:
secret keys = (s1, ..., sm) of a Naor-Reingold PR

1. Proxy choosesn random valuess, . .., u,, from Z, and
an additional random € Z,. Then for eachl < i < m,
the proxy and the participant invoke the OT protocol where
proxy is the sender with inputs:;, s; - u;) and receiver uses
x; as his selector bit. That s, if; = 0, the participant learns
u; and otherwise it learns; - u;. The proxy also sends the
valuej = ¢"/"“i, (These steps can be done in parallel.)

2. The participant multiplies together the values receinettie
OT stage. LefM denote this value. Then, it computg¥ =
(gM=i=15¢)" = F,(k)". Finally, the participant chooses a
random element from Z,, and encryptsF (k)" under the
public keybB = (g,h) of the database. The participant
sends the resuliy®, Fs(k)" - h*) to the proxy.

3. The proxy raises the received pair to the power’pfvhere
r’ is the multiplicative inverse of modulop. It also re-
randomizes the resulting ciphertext.

Correctness. Recall thatG has a prime ordep. Hence, when
the pair(g®, Fs(z)" - h) is raised to the power of = ', the
resultis(g*", F.(k) - h®"), which is exactlyEos (F.(k)). Thus,
the protocol is correct.

Privacy. All the proxy sees is the random tuple, . .., um, )

and Eos (Fs(k)™). This view gives no additional information ex-
cept of Eps(Fs(k)). (Formally, the view can be perfectly sim-
ulated givenEps(Fs(k)).) On the other hand, we claim that all
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Figure 2: Distributed proxy and database architecture

holds the input key computes 3 exponentiations in the basitop
col (respectively 8 in the extended protocol), as welDés:) mod-
ular multiplication / symmetric-key operations in bothsiens. (2)
The proxy computes 5 exponentiations in the basic protaesi(
12 in the extended protocol) ar@(m) modular multiplication /
symmetric-key operations. (3) The database computes 3rerpo
tiations in the basic protocol (resp. 5 in the extended aijo

4. DISTRIBUTED IMPLEMENTATION

In our system, both the proxy and database logical compsnent
can be physically replicated in a relatively straightforsvanan-
ner. In particular, our design can scale out horizontallhaodle
higher loads, by increasing the number of proxy and/or desab
replicas, and then distributing requests across thesgasplOur
distributed architecture is shown in Figure 2. Our curremple-

the participant sees is a sequence of random values and thereMentation covers all details described in the basic protasowell

fore it also learns nothing. Indeed, the participant seesvéttor
(s7' - u1,..., 80" - um), whose entries are randomly distributed
overG, as well as the valug = (¢'/"™#)". Sincer is randomly
and independently chosen frdfj, and sinceG has a prime order
p, the elemeny is also uniformly and independently distributed
over G. The protocol supports security against malicious partici
pants (in the sense that was described earlier) as long astes-
lying OT is secure against a malicious receiver.

3.3.2 Implementing Oblivious Transfer

In general, oblivious transfer is an expensive public-kpgra-
tion (e.g, it may take two exponentiations per single invocation).
In the above protocol, then, we execute an OT protocol fon béc
of the participants input (which would result, for example, in 64
exponentiations just to input a single IP address). Howésigaiet

as some security improvements of the extended vergan (n-
cluding the EOPREF, but not ciphertext re-randomizationpfs of
knowledge, or the final consistency check).

4.1 Proxy: Client-Facing Proxies and Decryp-
tion Oracles

One administrative domain can operate any number of proxies
Each proxy’s functionality may be logically divided intodvcom-
ponents: handling client requests, and serving as deoryptiacles
for the database when a particular key should be revealede No
of these proxies need to interact, other than having aththacing
proxies use the same secseb key the pseudorandom functidn
and all decryption-oracle proxies use the same publidfikey
PRX. In fact, these two proxies play different logical roles uro
system and could even be operated by two different admeriisr

al. [17] show how to reduce the amortized cost of OT to be as fast domains. In our current implementation, all proxies resgistith

as matrix multiplication. This “batch OT" protocol uses arsdard
OT protocol as building block. We implemented this batch @3-p
tocol on top of the basic OT protocol of [28].

3.4 Efficiency of our Protocol

In both the basic and extended protocol, the round compléxit
constant, and the communication complexity is linear inrthm-
ber of items. The protocol’s computational complexity isrdo
nated by cryptographic operations. For eackbit input key, we
have the following amortized complexity: (1) The partigipavho

%The “batch OT” protocol also has a version which preserves se
curity against a malicious receiver. This increases thebaurnof
multiplications by a multiplicative factor, but does nofeaft the
number of expensive public-key operations.

a single group membership server, although a distributedpr
membership service could be implemented for additiondt fals
erance [5, 41].

To discover a client-facing proxy, a client contacts thisugr
membership service, which returns a proxy IP address ind-oun
robin order (this could be replaced by any technique foreserv
selection, including DNS, HTTP redirection, or a local load
balancer). To submit its inputs, a client connects with this
proxy and then executes an amortized Oblivious Transfer) (OT
protocol on its input batch. This results in the proxy learn-

ing <EDB(FS(I<:Z~)), Eps(vi), EDB(EPRX(ki))> for each input tuple,
which it pushes onto an internal queue. (While Section 318 on

described the use of EIGamal encryption, its special pt@zeare
only needed fops (Fs(k:)); the other public-key operations can



be RSA, which we use in our implementation.) When this queue identify keys with values that satisfy the functign(DB through-

reaches a certain length (10,000 in our implementatioe) ptioxy put). We have instrumented our code to measure both. For a given

randomly permutes (shuffles) the items in the queue, andssend experiment requiring the proxy to proceskeys, proxy throughput

them to a database server. is defined as: divided by the time it takes between when the first
The database, upon determining that a key value satisfied, client contacts any client-facing proxy and when the lagtikgro-

sendsErrx (ki) to a proxy-decryption oracle. The proxy-decryption cessed by some client-facing proxy. Similarly, databasmughput
oracle decryptderx(k: ) and returnsk; to the database for storage is defined as the number of keys processed between when the firs

and subsequent release to other participants in the system. client-facing proxy forwards keys to some DB front-end arttew
. the DB back-end storage processes the last submitted keys.
4.2 Database: Front-end Decryption and Our experiments were run on multiple machines. The servers
Back-end Storage (proxy and DB) were run on HP DL160 servers (quad-core Intel
The database component can also be replicated. Similaeto th X€on 2 GHz machines with 4 GB RAM running CentOS Linux).
proxy, we separate database functionality into two pahesfront- These machines can perform a 1024-bit EIGamal encryption in

endmodule that handles proxy submissions and decrypts inputs, 2-2 MS, EIGamal decryption in 2.5 ms, RSA encryption in 0.5 ms

and aback-endmodule that acts as a storage layer. Each logical @1d RSA decryption in 2.8 ms. Due to a lack of homogeneous

module can be further replicated in a manner similar to tioayr servers, the clients were run on different machines depgnoin
The servers comprising the front-end database tier do remt ne ~the experiment. The machines used for the clients werere#t)e

to interact, other than being configured with the same pub- of the_ same conﬁguratlon_as the servers, or one of either (B) S

lic/private keypairos. Thus, any front-end database can decrypt SunFire X4100 servers with two_dual-core 2.2 GHz _Opteron 275

the Eos (F:(k;)) input supplied by a proxy, and the proxies can Processors (four 64-bit cores) with 16GB RAM running CentOS

load balance input batches across these database servers. or (C) Dell PowerEdge 2650 servers with two 2.2 GHz Intel Xeon
The back-end database storage, on the other hand, needs to bBrocessors and 5 GB of memory, also running Linux. o
more tightly coordinated, as we ultimately need to aggegit As noted in the introduction, our system can be used in differ

F.(k:)'s together, no matter which proxy or front-end database €Nt contexts. One of the most prominent is that of anomalgadet
processed them. Thus, the back-end storage tier partitans  tion: specifically, networks collaborating to identify atking 1P

keyspace of all 1024-bit strings over all storage nodes(Leon- addresses-e-g, belonging to a botnet—with greater confidence.
sistent hashing [19]). All such front-end and back-end hiasa Modern botnets can range up to roughly 100,000 unique h8g}s [
instances also register with a group membership serveghithie and we would like our system to be able to correlate suspsosn
front-end servers contact to determine the list of backatocage ~ hundreds of participating networks within some numberscufrs.
nodes. Upon decrypting an input, the front-end node detezsni N order to support such a usage scenario, our implementafib
which back-end storage node is assigned the resulting ke ), need to be able to process millions of keys in the span of hours

or many hundreds of keys per second. We will revisit the fehsi

and sends the IUD@F“’U“”L’)’ Y, EPRX(ki)> to this storage node. ity of our implementation for our supporting applicatiomsSec-

As these storage nodes each accumulate a horizontal poftion  tion 5.2, but these numbers should provide rough expeasfior
the entire tabld”, they test the value column for their local table to  the throughput numbers to be presented in Section 5.1.
see if any keys satisfy’. For each such row, the storage node sends

the tuple<Fs(ki)7T[k:i]7Epr(kZ—)> to a proxy-decryption oracle. 5.1 Scaling and Bottleneck Analysis

4.3 Prototype Implementation Effect of number of keys (Figure 3a). The input trace to our sys-
Our design is implemented in roughly 5,000 lines of C++. tem is parameterized by the number of clients and by the numbe

All communication between system components—client, theard of keys they each submit. In Figure 3a, we measure the thmugh

proxy, front-end database, back-end database storageyraxyg of our system as a function of the number of keys. More prégise

decryption oracle—is over TCP using BSD sockets. We use the We run a single client, a single proxy, and a single DB in otder
GnuPG library for large numbers (bignums) and cryptographi measure single-CPU-core proxy throughput and single-Cére-
primitives .9, RSA, ElGamal, and AES). The Oblivious Trans- DB throughput. The top solid curve shows proxy throughpuemh
fer protocol (and its amortized variant) were implementesinf the proxy and client utilize the amortized OT protocol, thielde
scratch, and comprised a total of 625 lines of code. All RSA en dashed curve shows DB throughput, and the bottom partiakcur
cryption used a 1024-bit key, and ElGamal used a correspgndi  Shows proxy throughput when the proxy and client utilizeydhk
1024-bit group size. AES-256 was used in the batch OT anchits u ~ Standard OT primitive, which does not include our amoriarat
derlying OT primitive. The back-end database simply stoaéte based extensions. The throughput of the OT primitive is edee
rows in memory, although we plan to replace this with a dwabl ingly low (less than one key per second), which is why it was no

key-value stored.g, BerkeleyDB [28]). evaluated on the full range of x-values.
Proxy throughput scales well with the number of incoming

keys when the client and proxy utilize the amortized OT proto

5. PERFORMANCE EVALUATION Throughput increases with increasing numbers of keys pehba
We wish to evaluate our system along three primary dimession as the amortized OT calls the primitive OT a fixed numbe¥ of
(a) Given fixed computing resources, what is the throughpatio times regardless of the number of input keyswith smalln (e.g,

system as a function of the size of the input set? (b) What are up to 1000), the cost of these calls to the primitive OT dongna
the primary factors limiting throughput? And, (c) how doée t overall execution time and leave the proxy underutilizedwiver,
throughput scale with increasing computing resources? attihe  as the size of the input set increases, the cost of encryfgiygon
case, we are concerned with both (1) how long it takes fontdie  the client becomes the primary bottleneck, which is the gihatws

to send key-value pairs to the proxy during the OT phasexf/ minimal increase in throughput abowe= 8000.

throughpuj and (2) how long it takes for the DB to decrypt and DB throughput, on the other hand, does not scale with the num-
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Figure 3: Scaling: Effect of (a) number of keys, (b) number of participants, and(c) number of proxy/database replicas.

ber of keys. The reason for this is that the intensive worktan t
DB is decryption, which is performed in batch, and it is tliere
entirely CPU limited. The DB becomes CPU limited at 10 keys
and remains CPU limited at 10,000 key®( latency goes up and
throughput remains constant). We noted earlier that thehmas

on which the DB and proxy run require 2.5 ms per decryption.
Since the DB has to perform 3 decryptions per key, the DB there
fore has a maximum throughput of 135 keys per second on asing|
CPU core. Figure 3a shows that our DB implementation achkieve
throughput of roughly 90 keys per second.

The amortized OT protocol [17] introduces a trade-off betwe
the message overhead and memory consumption.
footprint of this protocol per client-proxy interactionrfa keys
isn x 32 x 2 x 1024/8 = 8196n bytes (.e., we assume 32 bits
per key, the 2 values for the OT primitive, 1024-bit keys, &nd
bits per byte). Fom = 10,000 keys, for example, this requires
82 MB on both the proxy and the client. A proxy communicating
with 100 clients would therefore require in excess of 8GB efim
ory. A user of the protocol could choose to execute the amestti
OT protocol in stages, however, by sendingeys at a time, which
would reduce the memory footprint. Our system is parandri
to support this, and because Figure 3a shows that therdlesttt
gain from batch sizes in excess of 5,000 keys, the remairfarmro
experiments will use batch sizes of 5,000 keys.

Our architecture is designed to maximize throughput, naot-mi
imize latency. In fact, providing a meaningful measure of la

tency is challenging for multiple reasons: (a) the DB prsess

f o T[k;] > T once every secondsi(e., not upon arrival, which

wouldn’'t make sense unless= 1); (b) the proxy batches and ran-
domly permutes/shuffles key-value pairs for security; arjdife
substantial benefit of the amortized OT (over the OT prireitsee
again Figure 3a) is lost if the client submits only key-value pair,
which is required for a “true” latency experiment. Theselifjigas
notwithstanding, Figure 3a does provide a form of “mearéiat.
That is, a single client with 5000 keys would see mean proxy la
tency of 7.2 milliseconds per key and mean DB latency of 11.1
milliseconds per key.

Effect of number of participants (Figure 3b). Here we eval-
uate the throughput of our system as a function of the number o
clients sending keys. In this experiment, we limit the praxnd

DB to one server machine each. Four client-facing proxy gsees
are launched on one machine and four front-end DB processes a
launched on the other. They can therefore potentiallyzetiill
eight cores on these two machines. Figure 3b shows thatdxg pr
scales well with the number of clients. Proxy throughputéases

by nearly a factor of two between 8 and 32 clients. This sigsifi

Global Within amortized OT
wait encrypt| wait pow AES arith other OT|
60% 1% 0% 16% 4% 4% 6% 7%
Table 2: Breakdown of proxy resource usage
Global Within amortized OT
wait encrypt| wait pow AES arith other OT|
0% 40% | 31% 16% 2% 1% 3% 7%

Table 3: Breakdown of client resource usage

The memory

that, when communicating with a single client, a proxy spead
substantial fraction of its time idling. The four proxiesthis ex-
periment are not CPU limited until they handle 32 clientsyhich
time the throughput approaches 900 keys per second. TheDB, o
the other hand, is CPU-bound throughout. It has a througbput
about 350 keys per second, independent of the number ofglien

Effect of number of replicas (Figure 3c). Finally, we wish to
analyze how our distributed architecture scales with ttelave
computing resources. In this experiment, we provide up torés
across two machines to each of the proxy and DB front-endsleWh
the proxy is evaluated on 64 clients, computing resourcstcaints
meant that the DB is evaluated on 32 clients.

Both our proxy and DB scale linearly with the number of CPU
cores allocated to them. Throughput for the DB with 2 coreswh
handling 32 clients was over 173 keys per second, whereas at 8
cores the throughput was 651 keys per second: a factor of 3.75
increase in throughput for a factor of 4 increase in comuta:
sources. The proxy has throughput of 1159 keys per second whe
utilizing 4 cores and 2319 when utilizing 8 cores: an exactdia
of 2 increase in throughput for an equal increase in comguga
sources. This clearly demonstrates that our protocolitectore,
and implementation can scale up to handle large data sefarin
ticular, our entire system could handle input sizes on tlieroof
millions of keys in hours.

Micro-benchmarks. To gain a deeper understanding of the fac-
tors limiting the scalability of our design, we instrumeshtee code

to account for how the client and proxy were spending theid CP
cycles. While the DB is entirely CPU bound due only to decryp-
tions (.e, its limitations are known), the proxy and client engage
in the oblivious OT protocol whose bottlenecks are lessrcléa
Tables 2 and 3, we therefore show the fraction of time thentlie
and proxy, respectively, spend performing various taskslee for
their exchange. In this experiment, we have a single clients
keys to a single proxy at the maximum achievable rate.



At the highest level, we split the tasks performed into (ailing
(called “wait”), (b) encrypting or decrypting values (“eypt”), or
(c) engaging in the amortized OT protocol. We further sphitrkv
within the amortized OT protocol into time spent waitingrfpem-
ing modulo exponentiations (“pow”), calling AES256, perfong
basic arithmetic such as multiplication, division, or fimglimul-
tiplicative inverses (“arith”), calling the OT primitiveé'©@T"), and
any other necessary tasks (“other”) such as XOR’ing numbers
erating random numbers, allocating or de-allocating meneic.

Table 2 shows that when communicating with a single client,
the client-facing proxy spends more than 60% of its timenmili
while waiting for the client—it ismore than60% because some
part of the 7% of time spent within the OT primitive is alsoedl
time. The 60% idle time is primarily due to waiting for theesit to
encryptk; and Fs(k;). The single largest computational expense
for the proxy is performing powmods at 16%; the remaining-non
OT tasks add up to 15%. In order to make the proxy more efficient
therefore, utilizing a bignum library with faster exponation and
basic arithmetic would be advantageous.

The client also spends a non-trivial amount of time waiting—
31% of total execution time—but substantially less thanptoey.
It spends 40% of its time encrypting values. The reason s 4
does not match up with the 60% idle time of the proxy is because
the proxy finishes its portion of the amortized OT before tient
does its portion. That is, 20 out of the proxy’s 60% idle timeliie
to the client processing data sent by the proxy in the lagestéthe
amortized OT protocol, and the remaining 40 is due to theitke-
crypting its values. A with the proxy, the client would beh&fm
faster exponentiations, but encryption is clearly the mhbjuttle-
neck. We noted before that the GnuPG cryptographic libragy w
use performed public-key operations in approximately 2.8-ms.
On the same servers, we benchmarked the Crypto++ librargrto p
form RSA decryption in only 1.2 ms, increasing speed by 130%.
Crypto++ would also allow us to take advantage of ellipticveu
cryptography, which would increase system throughput.utarge
work, we plan to modify our implementation to use this lilyrar

5.2 Feasibility of Supporting Applications

In this section, we revisit several potential applicati@fiour
system. We consider our results in light of their potenteihénds
on request rate: the number of requests per unit time that neus
satisfied, the number of keys which must be stored in the syste
and the number of participants.

Anomaly detection. Network operators commonly run systems
to detect and localize anomalous behavior within their oetg.
These systems dynamically track the traffic mig-g; the volume

of traffic over various links or the degree of fanout from aticatar
host—and detect behavior that differs substantially fromdtatis-
tical norm. For example, Maet al. [24] found that most DDoS
attacks observed within a large ISP were sourced by fewer tha
10,000 source IPs, and generated 31,612 alarms over a fk-w
period (0.8 events per hour). In addition, Sosteal. [37] found
that volume anomalies occurred at a rate of four per day on ave
age, most of which involved fewer than several hundred solR's.
Finally, Ramachandragt al.[33] found were able to localize 4,963
Bobax-infected host IPs sending spam from a single vantai. p
We envision our system could be used to improve accuracyestth
techniques by correlating anomalies across ISP boundakés
found our system could handle 10,000 IP addresses as keiisa wi
request rate of several hundred keys per second, even withase
hundred participants. Given our system exceeds the regeirs

of anomaly detection, our system may enable the particspemt
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“tune” their anomaly detectors to be more sensitive, andicged
false positive rates by leveraging other ISPs’ observation

Cross-checking certificates. Multiple vantage points may be used
to validate authenticity of information (such as a DNS remlyssh
certificate [29, 39]) in the presence of “man-in-the-middigacks.
Such environments present potentially larger scalinglehgés
due to the potentially large number of keys that could beriege
According to [18], most hosts execute fewer than 15 DNS Ipsku
per hour, and according to [35], ssh hosts rarely authestieith
more than 30 remote hosts over long periods of time. Herenae e
vision our system could simplify the deployment of such scés,
by reducing the amount of information revealed about ctierg-
quest streams. Under this workload (15 key updates per tittr,
30 keys per participating host), our system scales to stigpoeral
hundred hosts with only a single proxy. Extrapolating ouatger
workloads, our system can handle tens of thousands of slgtot-
ing tens of thousands of keys with under fifty proxy/datalyzeses.

Distributed ranking.  Search tools such as Alexa and Google
Toolbar collect information about user behavior to refirersk re-
sults returned to users. However, such tools are occabioiaal
beled asspywareas they reveal information about the contents of
queries performed by users. Our tool may be used to imprave pr
vacy of user submissions to these databases. It is estirtaéed
Alexa Toolbar has 180,000 active users, and it is known that a
erage web users browse 120 pages per day. Here, the number of
participants is large, but the number of keys they indiviljustore

in the system is smaller. Extrapolating our results to 180,0ar-
ticipants, and assuming several thousands of keys, owrraysan
still process several hundred requests per second (conéisiy to
several hundred thousand clients) per proxy/database pair

6. CONCLUSIONS

In this paper, we presented the design, implementationeeate
uation of a collaborative data-analysis system that is bo#able
and privacy preserving. Since a fully-distributed solotiould be
complex and inefficient, our design divides responsibitigfween
two independent parties—a proxy that obliviously blinds tfient
inputs and a database that identifies the (blinded) keysévatval-
ues satisfying an evaluation function. The functionalitypoth the
proxy and the database can be easily distributed for greeddabil-
ity and reliability. Experiments with our prototype implemtation
show that our system performs well under increasing numbiers
keys, participants, and proxy/database replicas. Thepesdnce
is well within the requirements of our motivating applicats, such
as collaborating to detect the malicious hosts respon§iblBoS
attacks or to validate the authenticity of information ie firesence
of man-in-the-middle attacks.

As part of our ongoing work, we plan to evaluate our system in
the context of several real applications—first through egvdriven
evaluation and later by extending our prototype to run ttegxgmei-
cations. In addition, we plan to explore opportunities tpldg our
system in practice. A promising avenue is distributed mé&mon-
itoring infrastructures such as NetDimes [38] and the newa-
(Measurement Lab) initiative [22]. We believe our systeruldo
lower the barriers to collaborative data analysis over titerhet,
enabling a wide range of new applications that could improve
ternet security, performance, and reliability.
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APPENDIX

Here, we describe the extended protocol of Section 3.2.

1.

Each participant interacts with the proxy as follows. €ach
entry (k;, v;) in the participant’s list, the participant and the
proxy run a sub-protocol for encrypted oblivious evaluatio
of the PRF (EOPRF). At the end of this protocol, the par-
ticipant learns nothing and the proxy learns only the value
Eos(Fs(k;)). The participant sends the valuBss ( Errx(k:))

and Eps (v;) together with a proof of knowledge (POK) for
knowing the plaintext of the last entry. If the POK succeeds,
then the proxy re-randomizes the ciphertexts and adds the
triple to a list. Otherwise, if the POK fails, the proxy igesr
the triple.

. Same as in the original protocol.
. The DB builds the tableR andH as in the original protocol.

For each row irR, the DB sends to the proxy the valiig(k;)
together with the corresponding liEtk;] which supposedly
contains ciphertexts of the forferx(k;). The DB also re-
randomizes these ciphertexts.



4. The proxy goes over the received table. For each entry of rows which are left with no blinded key column, a random vatie

the received table, it decrypts all the values in the Higt; |
and verifies that the plaintext corresponds to the blinded ke
Fi(k;). It reports inconsistencies to the DB and sehds it
appears in the lisE[k;].

5. For each row, the DB updates the [isfk;] by omitting the
valuesw; for which inconsistencies were found. Then, it ap-
plies f again to the updated row, checks whether it should
be released, and, if so, publishes the corresponding: kiey
gether with the updated list of valugs$v;]. (The valuek; was
given by the proxy as at least one of the ciphertext&|in]
was consistent with the blinded key.)

We now sketch the proofs for the security of the protocol.stFir
let us formally define the functionality we consider. Comesidll
submitted key-value pairs as a table, where each distinckkés
associated with a list [k;] of all valuesv; submitted with it. LeR

be the sub-table that consists of all the rows that shouléveated
(according tof), and letA be the table that contains all the other
entries with the key column omitted. Our functionality outtpR

as a public value antil as a private output for the DB. We prove
that our protocol securely computes this functionality.

Honest but curious coalition of participants and a proxy. The
joint view of the proxy and the honest-but-curious (HBC)tjuar
pants contains the following: (1) the inpyfs;, v;) of the HBC par-
ticipants and the public outpuf®; (2) the information exchanged
by the proxy and the HBC participants during the first staggthe
view of the proxy when interacting with other participantsthe
first stage, which consists of the proxy’s view of the subt@cols
(EOPRF and POK) as well as triples of the cipherteiis (v;),
Eav(Fs(ksi)), and Eps( Errx(ks)); and (4) the tabldR sent by the
DB to the proxy at the “revealing” phase of the protocol.

This view can be simulated, given the corresponding infiuts; )
and the output®, as follows. Choose a random PRF keyas well
as public keysPrx andDB. Simulate (1) and (2) in the natural
way (all the information needed for these computations\isrgi.
To simulate (3), use the simulators of the sub-protocolsgamer-
ate garbage ciphertexfSys(0), Eps(0), Eps(0). To simulate (4),
encrypt the values iR underPrx and blind the keys unde.

Honest-but-curious coalition of participants and a DB. The
joint view of the proxy and the HBC participants contains fible
lowing: (1) the inputs(k;, v;) of the HBC participants and the
public outputsk; (2) the view of the HBC participants during the
interaction with the proxy, which consists of the view of -
protocols (EOPRF and POK) as well as triples of cipherté&ktsv;),
Ea,(Fs(k:)), andEos (Errx(k:)); and (3) the view of the DB when
interacting with the proxy, which consists of the takfeandH (en-
crypted under the DB'’s public key). R

Given the corresponding input;, v;), the public outpuR, and
the DB's private outpul, we show how to simulate the above view.
First, choose a random PRF keyas well as public keysrx and
DB. Then, simulate (1) and (2) in the natural way (all the infarm
tion needed for these computations is now given). It rempisis
to simulateR andH. The tableR can be computed frorﬁAands.
To simulateH, we should somehow add blinded valuetdgand
encrypt the tuples unders). We do this by building a key-value
table for the inputs of the HBC participants. Then, for eanh k;,
we choose a random consistent rowHrand add the valué’, (k;)
as an additional blinded-key column. (A row is consisterthvai
key k; if the list of values of the HBC's that are associated with
appear as part of the value list of the rowfin) Finally, for those
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added.

Malicious coalition of participants. Let A be an adversarial
strategy for a coalition of cheating participants. We carcita
simulator that achieves the same “cheating” affect in thealid
world. The simulatorS chooses a key for the PRF, as well as
pairs of private/public keys for the DB and proxy. It provédbese
keys to A and executesA. For each iteratiori, A generates a
triple (as, bs, i), together with a POK for knowing the plaintext
encrypted inc;. (In an honest executio; = Fog(Fs(k:)), bi =
Eos(Eerx(ki)), ande; = Eps(v;), for somek; andv;.) The simu-
lator S uses the POK to extract; if the POK fails, thenS ignores
the triple. Finally,S checks (using all the above keys) whether
andb; are consistent.g., it decryptsa; to a;, decryptsh; to b}, and
then verifies that(b;) = a;). If the check fails,S ignores the
tuple. Otherwise, the simulator, which now knows béthandwv;,
passes these entries to the trusted party.



