NetChain: Scale-Free Sub-RTT
Coordination

Xin Jin
Xiaozhou Li, Haoyu Zhang, Robert Soulé, Jeongkeun Lee,
Nate Foster, Changhoon Kim, lon Stoica

=X
et g
JOHNS HOPKINS BARENFE%?};}I A Berkeley
UNIVERSITY PRINCETON B ALY/ UNIVERSITY OF CALIFORNIA

UNIVERSITY

Conventional wisdom: avoid coordination

NetChain: lightning fast coordination
enabled by programmable switches

Open the door to rethink distributed systems design

Coordination services: fundamental
building block of the cloud

V. APACHE <>
Applications 'Whadamp Sﬁ“q“’#(\z % kaﬂ(CI EEEE
<4
Coordination GO gle 1 2
Service C hub by lr Zookeeper
ia

Provide critical coordination functionalities

>

©

°
=
o]
=

-

wn
3
O:
“
ke
A >
Q:
=
Q
AVAVA
AVAVAVA

VAVAVAY
VAVAY

MESOS

Configuration Group Distributed Barrier
Management Membership Locking

Coordination
Service

The core is a strongly-consistent,
fault-tolerant key-value store

>
©
°
=
o]
=
-
wn
3
O:
“
ke
A >
Q:
=
O
AVAVA
AVAVAVA

VAVAVAY
VAVAY

MESOS

Configuration Group Distributed Barrier
Management Membership Locking
Strongly-Consistent, Fault-Tolerant Key-Value Store

This Talk Servers

Coordination
Service

Workflow of coordination services

request

reply

client

» Throughput: at most server NIC throughput
» Latency: at least one RTT, typically a few RTTs

Opportunity: in-network coordination

request

communication-heavy,

Example [NetBricks, OSDI’16] Barefoot Tofino
Packets per second 30 million A few billion
Bandwidth 10-100 Gbps 6.5 Tbps
Processing delay 10-100 us <1us

Opportunity: in-network coordination
i (G
coordination switches

reply running a consensus protocol

&) & o

client

» Throughput: switch throughput
» Latency: half of an BT T

Design goals for coordination services

» High throughput
» Low latency
» Strong consistency

> Fault tolerance

Design goals for coordination services

» High throughput -
Directly from

high-performance switches

P

» Low latency

» Strong consistency
. Chain replication in the network

> Fault tolerance _

What is chain replication

Read Read
Request Reply

0—0 y

Head Replica Tall

» Storage nodes are organized in a chain structure

» Handle operations
» Read from the tall

10

What is chain replication

Write Read Read/Write
Request Request Reply
Head Replica Tall

» Storage nodes are organized in a chain structure

» Handle operations
» Read from the tall
» \Write from head to tall

» Provide strong consistency and fault tolerance
» Tolerate f faillures with f+1 nodes

11

Division of labor in chain replication:
a perfect match to network architecture

Storage Nodes

Chain * Optimize for high-performance to . Handle less frequent reconfiguration
Replication handle read & write requests . £

) : * Provide fault tolerance
* Provide strong consistency

2 2

Network Data Plane Network Control Plane
Network

Architecture * Handle packets at line rate » Handle network reconfiguration

Auxiliary Master

12

NetChain overview

Handle read & write requests
at line rate

NetChain

Handle reconfigurations
(e.g., switch failures)

Network
Controller

13

How to build a strongly-consistent,
fault-tolerant, in-network key-value store

» How to store and serve key-value items”? B
| | | Data
» How to route queries according to chain structure? = Plane
» How to handle out-of-order delivery in network?? _
Control

> How to handle switch failures? —
Plane

14

PISA: Protocol Independent Switch Architecture

» Programmable Parser
» (Convert packet data into metadata

» Programmable Mach-Action Pipeline
» Operate on metadata and update memory state

Match + Action

5B B E

—
= N (e
—
= LN] N e
é []] []
= e [e R
—

\ J

Y

Programmable Parser

Programmable Match-Action Pipeline

AR

15

PISA: Protocol Independent Switch Architecture

» Programmable Parser
» Parse custom key-value fields in the packet

» Programmable Mach-Action Pipeline
» Read and update key-value data at line rate

Match + Action

o

W

e, [

|

\

Programmable Parser

PN N

Y

5B B E

J

Programmable Match-Action Pipeline

AR

16

~

Network NetChain NetChain
Control plane (CPU) Management Switch Agent Controller
Run-time API
D at a pl ane (ASIC) NetWOI'k Key-Value
| Functions Store
Phe ’\ j\ D ~

Match + Action

= BN (e By =
= - TNl [e o=
=| O > = = i b =
= > e e =
— —
\
Y

Programmable Parser Programmable Match-Action Pipeline

How to build a strongly-consistent,
fault-tolerant, in-network key-value store

>
| | | Data
» How to route queries according to chain structure? = Plane
» How to handle out-of-order delivery in network?? _
Control

> How to handle switch failures? —
Plane

18

NetChain packet format

Existing Protocols NetChain Protocol

A A
4 Y A\

[| oP [SEQ| KEY VALUE

N J N J —
V . -Y .
L2/L3 routing NetChain routing | read, write, delete, etc.] [inserted by head switch]

reserved port #]

» Application-layer protocol: compatible with existing L2-L.4 layers

» Invoke NetChain with a reserved UDP port

19

In-network key-value storage

Match-Action Table Register Array (RA)
[= 0
Key = X Read/Write RAD] —— |1
Key =Y Read/Write RA[5] g
Key =Z Read/Write RA[2] >< 4
Default Drop!() S

» Key-value store in a single switch
» Store and serve key-value items using register arrays [SOSP’17, NetCache]

» Key-value store in the network
» Data partitioning with consistent hashing and virtual nodes

20

How to build a strongly-consistent,
fault-tolerant, in-network key-value store

» How to store and serve key-value items”? B
| | | Data
» How to route queries according to chain structure” |~ Plane
» How to handle out-of-order delivery in network?? _
Control

> How to handle switch failures? —
Plane

21

NetChain routing: segment routing

according to chain structure

Write R t . Write Repl
rite Reques /Cillejn\ rite Reply
dstIP SC dstIP SC

_ol

1 zs, | |=2 Si|S| ... o ZHy |
> >
Head Replica Talil
dstIP SC 3 dstIP SC
=S, =12 =S, =0

22

NetChain routing: segment routing

according to chain structure

Head

Client

Read Request

Read Reply

S1

Replica

23

How to build a strongly-consistent,
fault-tolerant, in-network key-value store

» How to store and serve key-value items”? B
| | | Data
» How to route queries according to chain structure” = Plane
» How to handle out-of-order delivery in network? _
Control

> How to handle switch failures? —
Plane

24

Problem of out-of-order delivery

Concurrent Writes
W,: foo=B

W.: foo=C

Head Replica Talil
-0—0—0
foo=A foo=A foo=A
foo=B
foo=C foo=C
foo=B f60=B
foo=C

25

How to build a strongly-consistent,
fault-tolerant, in-network key-value store

» How to store and serve key-value items”? B
| | | Data
» How to route queries according to chain structure? = Plane
» How to handle out-of-order delivery in network?? _
Control

> —

Plane

26

Before failure: tolerate f failures with f+1 nodes

Handle a switch failure (s & (s.)

Fast Failover Failure Recovery

» Failover to remaining f nodes » Add another switch

»> Tolerate -1 failures » Tolerate f+1 failures again

> Efficiency: only need to update » (Consistency: two-phase atomic
nelghbor switches of failed switch switching

» Minimize disruption: virtual groups

27

Protocol correctness

Invariant. For any key k that is assigned to a chain of
nodes [S4, Sy, ..., S, if1<i<j<n(.e,Sisa
predecessor of S), then State’i[k]. seq = State®i[k]. seq.

» Guarantee strong consistency under packet loss,
packet reordering, and switch failures

» See paper for TLA+ specification

28

Implementation

» Testbed

» 4 Barefoot Tofino switches and 4 commodity servers

> Switch

» P4 program on 6.5 Tbps Barefoot Tofino
» Routing: basic L2/L.3 routing
» Key-value store: up to 100K items, up to 128-byte values

> Server

» 16-core Intel Xeon E5-2630, 128 GB memory, 25/40 Gbps Intel NICs
» Intel DPDK to generate query traffic: up to 20.5 MQPS per server

29

Evaluation

» Can NetChain provide significant performance improvements”?
» Can NetChain scale out to a large number of switches”?
» Can NetChain efficiently handle failures?

» Can NetChain benefit applications?

30

Evaluation

» Can NetChain provide significant performance improvements”?
>
» Can NetChain efficiently handle failures?

>

31

Orders of magnitude higher throughput

=@ = NetChain(max) =—#= NetChain(4) == ZooKeeper =@ = NetChain(max) =#= NetChain(4) == ZooKeeper
__10* ¢ (2000 MQPS] __10¢ (2000 MQPS
(D’_) 103 S EEEE FEEEY TEEEE) ‘0’3 103 SERY EEER PR TR
@) 82 MQPS e/ 82 MQPS
= 102) A o A = 102 ﬁ.—‘—‘
= =21
S 10 3 10
9 100 | |) 2100 |]
5 0.15 MQPS 5 0.15 MQPS
o) - o)]
E 10~ [O r [l E 107"
107 1072

0 32 64 96 128 0 20K 40K 60K 80K 100K
Value Size (Byte) Store Size

Orders of magnitude lower latency

4 2350 us
-li= ZooKeeper (write) :
Z == ZooKeeper (read) 1

=@= NetChain (read/wriie)

RN RN
o o
w

Latency (us)
2

I
I
i
i
o O O O 000 0O O

o

RN
o

10° T
10 102 107" 10° 10" 10% 10° 10%
Throughput (MQPS)

Handle failures efficiently

= 25

25 20 |
8)% 15 I
= 1g i $ | A

- 0 failover failure recovery

50 100 150

o

(a) 1 Virtual Group.

200 Time (s)

34

Conclusion

» NetChain is an in-network coordination system that provides
olllions of operations per second with sub-R1T 1 latencies

» Rethink distributed systems design
» (Conventional wisdom: avoid coordination
» NetChain: lightning fast coordination with programmable switches

» Moore's law is ending...

» Speclalized processors for domain-specific workloads: GPU servers,
FPGA servers, TPU servers...

» PISA servers: new generation of ultra-high performance systems for
|O-heavy workloads enabled by PISA switches

35

Thanks!

