Existential Consistency: Measuring and Understanding Consistency at Facebook

Haonan Lu*, Kaushik Veeraraghavan†, Philippe Ajoux†, Jim Hunt†, Yee Jiun Song†, Wendy Tobagus†, Sanjeev Kumar†, Wyatt Lloyd*†

*University of Southern California, †Facebook
Haonan Lu is going to an event.

First Commenter Wins *Free* Oculus!

OCT 06
Tue 12 AM · Monterey, California, USA
Symposium on Operating Systems Principles is going

Like · Comment · Share
Haonan Lu is going to an event.

First Commenter Wins *Free* Oculus!
Tue 12 AM · Monterey, California, USA
Symposium on Operating Systems Principles is going

Haonan Lu Mine! yeah~ lucky!
Fundamental Tension

Consistency vs Performance

- Eliminates anomalies (Oculus example)
- Makes systems easier to program
- Difficult to quantify

- Lower latency
- Higher throughput
- Simple to quantify

First study of consistency in a large-scale, production system – Facebook TAO
Anomaly: Unexpected Behavior

Post Example

"Hey, I mentioned you in a post"

New post "@Wyatt, you should check out this game!"

Read friend’s timeline

Old posts
Anomaly: Unexpected Behavior

Oculus Example

1. “Mine! yeah~ lucky!”
2. “I wouldn’t mind…”

1. “I wouldn’t mind…”
2. “Mine! yeah~ lucky!”
Does Facebook have consistency anomalies?

How many?

What type?
TAO: Eventually Consistent Cache

Vulnerability window: time during asynchronous replication when anomalies can happen
Quantifying Anomalies

• How often do anomalies occur?
 – Collect trace of requests to TAO

• What consistency would prevent them?
 – Run anomaly checkers on the trace
Trace Collection

• Collect trace on web servers

• Challenges in tracing production system
 – Volume of requests
 – Time skew between web servers
 – Missing requests
Challenge: Volume of Requests

• Billions of requests per second [ATC ’13]
 – Too many to log

• Sample on objects
 – Object: vertex in social graph
 – Log all requests to objects in sample
 – Sufficient for local consistency models
Local Property Enables Sampling

• “… the system as a whole satisfies P whenever each individual object satisfies P.”[1]

Local consistency models can be checked on a per object basis

• Local
 – Linearizability
 – Per-Object Sequential
 – Read-After-Write

• Non-local
 – Strict Serializability
 – Causal

Challenge: Time Skew

• Time skew across web servers
 – 99.9 percentile for 1 week: 35ms

• Add time skew to request’s duration
 – More overlapped requests
 – Eliminates false positives
Logging Details

• Logged information:
 – Start time
 – Finish time
 – Read or write
 – Value: match read with write

• Sampling rate: 1 out of 1 million objects
 ~100% of requests to sampled objects

Determine real time ordering of requests

Post (new)
Trace Statistics

• 12 days (8/20 – 8/31)

• 17 million objects

• 3 billion requests
Check Trace for Anomalies

- Linearizability checker
 - Paxos provides

- Per-Object Sequential checker
 - PNUTS provides

- Read-After-Write checker
 - TAO provides within a cluster
Linearizability

- Strongest non-transactional consistency
 - Real-time constraint
 - Post example
 - Total order constraint
 - Oculus example!

Post (old) Post (new) Read (old)
Haonan Haonan Wyatt

Should return “new”
Linearizability Checker

• Graph captures state transitions
 – Vertex: write operations
 – Edge: real-time order

• Merge read with its write
 – Captures state transitions seen by users

• Anomaly if merge causes a cycle
 – Cycle indicates user’s view ≠ system view
Linearizability Checker

- Captures real-time constraint
 - Read should return new post instead

Haonan

Post (old)

Post (new)

Haonan

Read (old)

Wyatt

Post (old)

Post (new)

Read (old)

Anomaly

Should return new post
More Complex Cases

http://tinyurl.com/sosp15-demo
Result Overview

• Linearizability
• Per-Object Sequential
• Read-After-Write
• Bounds on non-local consistency models

Anomalies found for all consistency models – adopting them would have benefits
Linearizability Results

• 5 anomalies per million reads
 – Prevented by Paxos-based implementation

• Upper bound on TAO anomalies
 – Strongest consistency we checked

TAO is highly consistent
Linearizability Results
Real-Time Constraint Violations

• 4 per million reads
Linearizability Results
Total Order Constraint Violations

• 1 per million reads
Per-Object Sequential Results

• 1 anomaly per million reads
 – Total order constraint
 – User session constraint (1 per 10 million)
 • Users should see their writes
Infer Bounds on Causal

Linearizability
5 per million reads

Causal

Per-Object Sequential
1 per million reads

Superset of causal anomalies

≤ 5 per million reads

≥ 1 per million reads

Subset of causal anomalies
Lower Bounds on Transactions

Strict Serializability
> 5 per million reads

Linearizability
5 per million reads

Causal

Causal with Transactions
> 1 per million reads

Future research should provide transactions

Per-Object Sequential
1 per million reads
Real-Time Consistency Monitor

• Checkers cannot run in real-time

• Φ-consistency
 – Measure convergence of replicas

• A real-time health monitor
 – Alarms when a replica falls behind
Conclusion

• Benefits of consistency are hard to quantify
 – First study of a large-scale production system

• Measure Facebook’s TAO system
 – Collect trace and run anomaly checkers
 – Real-world challenges

• Results
 – TAO is highly consistent
 – Benefits of adopting stronger consistency exist
 – Research should provide transactions