Unsupervised Conversion of 3D Models for Interactive Metaverses

Jeff Terrace, Ewen Cheslack-Postava, Philip Levis and Michael J. Freedman

What is a Virtual World?

- Three-dimensional, online environment
- Users can communicate, shop, socialize, collaborate, and learn.

Virtual World Types

Static

- Fixed art
- Artist-generated
 environment
- Predictable
- Restricted user ability

Dynamic

- New art can be inserted
- User-generated
 environment
- Unpredictable
- Open, free ability

Virtual World Examples

- World of Warcraft
 - Online game
 - 10 million players

- Second Life
 - Virtual world
 - Explore, socialize, trade

• EvE Online, Habbo Hotel, etc.

Sirikata

Platform for seamless, scalable, and federated metaverses

3D Content

- Mesh Representation
 - Vertex coordinates
 - Normal vectors
 - Polygon indexes
 - Textures
 - Texture coordinates

Importing Content

- GPU limits for interactive frame rates
 - triangles (millions)
 - texture RAM (256MB 2GB)
 - batches / draw calls (thousands)
- Static worlds
 - Artist works closely with developers
 - Pre-processed
- Dynamic worlds
 - Arbitrary, user-generated content

Gathering Content

- Summer 2011
- 15 students at Stanford and Princeton
- Uploaded 3D models to website

Draw Call Distribution

Possible Solutions

- Enforce limits on triangles, textures, and draw calls
 - Decreases usability
 - Reduces available content

- We can do better!
 - Automatically condition the content into efficient format

Conditioning Goals

- 1. Reduce Draw Calls
 - 1 per object
- 2. Reducing Texture Space
 - To fit more textures into RAM
- 3. Simplify Mesh
 - Complex meshes can be drawn at lower resolution
- 4. Progressive Transmission
 - Display low-resolution first, streaming more detail
 - Great for low-bandwidth links or distant observers

Conditioning

- Mesh Simplification
 - Well studied area
 - Mesh Optimization [Hoppe '93]

- Surface simplification using quadric error metrics [Garland '97]
- Appearance preserving simplification [Cohen '98]
- Problems with progressive models
- Retexturing + simplification
 - Existing methods
 - Texture mapping progressive meshes [Sander '01]
 - Supervised algorithm, small testing set

Conditioning Pipeline

- 1. Cleaning and normalizing
- 2. Chart creation
 - contribution: unsupervised
- 3. Fair allocation of texture space to charts
 - novel technique
- 4. Mesh simplification
- 5. Progressive, streamable encoding contribution: efficient format

Cleaning and Normalizing

- All polygons are converted to triangles
- Missing vertex normals are generated
- Extraneous data is deleted
- Complex scene hierarchies and instanced geometry is flattened to a single mesh
- Vertex data is scaled to a uniform size

Creating Charts

- Retexturing
 - Creates new, single texture from model
- Each triangle could be placed in texture

 Not great for simplification
- Instead, partition mesh into flat regions
- Starts with a chart for every triangle
- Priority queue of chart merges
 - Ordered by error term incorporating compactness and planarity

Heuristic Examples

Allocating Texture Space

- Each chart is parameterized from 3D space to 2D texture space
- Each chart is given a size in 2D space

Allocating Texture Space

- Original technique [Sander '01]
 - L²(T) root-mean-square stretch
 - $-L^{\infty}(T)$ maximum stretch
- L²(T) is used because
 - "unfortunately there are a few triangles for which the maximum stretch remains high"
- With our larger set of models, so is L²!
- A chart with high L²(T) can allocate too much space, leaving little room

Allocating Texture Space

$$A_{c}^{''} = \sqrt[3]{\left(\frac{L_{c}^{2}}{\sum L^{2}}\right)\left(\frac{A_{c}}{\sum A}\right)\left(\frac{A_{c}'}{\sum A'}\right) \cdot T}$$

- L²_c chart's texture stretch
- A_c chart's surface area in 3D
- A' $_{\rm c}$ chart's area in the original texture
- ΣL^2 , ΣA , $\Sigma A'$ sum across all charts

Mesh Simplification

- We use technique based on [Garland '97] and [Sander '01] using quadric error and texture stretch
- See paper for unsupervised stopping heuristic

Ideal Progressive Encoding

- Simplified base mesh can be downloaded and displayed without downloading the rest
- 2. Vertex data can be streamed, allowing a client to continuously increase mesh detail
- 3. The mesh's texture can be progressively streamed, allowing a client to increase texture detail

File Format

Existing formats

- OBJ, STL, PLY, FBX (60 listed on Wikipedia)

- COLLADA
 - Open standards-based XML format (2006)
 - Widely supported: SketchUp, Blender, 3DS Max, Maya, Autodesk, Google Earth
 - pycollada maintainer
- But there are no existing usable progressive formats

Base Mesh & Refinements

- Base mesh encoded as COLLADA
 backwards compatible, unmodified clients
- Progressive vertex data is a list of refinements: vertex additions, triangle additions, index updates

Progressive Textures

- No suitable progressive image formats
 - JPEG 2000, gif
 - Memory buffer requires O(full resolution) size
 - Microsoft DDS format
 - fixed-point only (like png)
 - not well supported
- Full resolution is resized to multiple LODs
 - 1x1, 2x2, 4x4, ... 512x512, 1024x1024, ...
 - Also called mipmaps, each encoded as JPEG
 - Concatenated together into TAR file
- Achieves good compression
- Allows client to index into file, e.g. HTTP Range request

128x128

512x512

2048x2048

0%

50%

100%

Evaluation

• Render efficiency

– How much does batching help?

File Size

– How does conditioning affect file size?

- Perceptual Error
 - How much does conditioning change how models look?

Render Efficiency

File Size – Base Mesh

Perceptual Error

- Delta E < 1 not noticeable by average human
- Delta E of 3-6 are commonly-used tolerances for commercial printing

Conditioning Contributions

- Unsupervised
- Apportioning texture space fairly
- Efficient progressive encoding
- A complete, robust conversion framework

Questions?

open3dhub.com sirikata.com

@jterrace

jterrace@cs.princeton.edu