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What is a Virtual World?


•  Three-dimensional, online environment

•  Users can communicate, shop, socialize, 

collaborate, and learn.
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Virtual World Types

Static

•  Fixed art


•  Artist-generated 
environment


•  Predictable


•  Restricted user ability


Dynamic

•  New art can be inserted


•  User-generated 
environment


•  Unpredictable


•  Open, free ability
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Virtual World Examples

•  World of Warcraft

– Online game

– 10 million players


•  Second Life

– Virtual world

– Explore, socialize, trade


•  EvE Online, Habbo Hotel, etc.
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Sirikata

•  Platform for seamless, scalable, and 

federated metaverses
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3D Content

•  Mesh Representation

– Vertex coordinates

– Normal vectors

– Polygon indexes

– Textures

– Texture coordinates
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Importing Content

•  GPU limits for interactive frame rates

–  triangles (millions)

–  texture RAM (256MB – 2GB)

– batches / draw calls (thousands)


•  Static worlds

– Artist works closely with developers

– Pre-processed


•  Dynamic worlds

– Arbitrary, user-generated content
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Gathering Content

•  Summer 2011

•  15 students at Stanford and Princeton

•  Uploaded 3D models to website
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Draw Call Distribution
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Possible Solutions

•  Enforce limits on triangles, textures, and 

draw calls

– Decreases usability

– Reduces available content


•  We can do better!

– Automatically condition the content into 

efficient format
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Conditioning Goals

1.  Reduce Draw Calls

–  1 per object


2.  Reducing Texture Space

–  To fit more textures into RAM


3.  Simplify Mesh

–  Complex meshes can be drawn at lower resolution


4.  Progressive Transmission

–  Display low-resolution first, streaming more detail

–  Great for low-bandwidth links or distant observers
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Conditioning

•  Mesh Simplification

– Well studied area


•  Mesh Optimization [Hoppe ‘93]

•  Surface simplification using quadric error metrics [Garland ‘97]

•  Appearance preserving simplification [Cohen ’98]


–  Problems with progressive models


•  Retexturing + simplification

– Existing methods


•  Texture mapping progressive meshes [Sander ‘01]


–  Supervised algorithm, small testing set
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Conditioning Pipeline

1.  Cleaning and normalizing

2.  Chart creation

–  contribution: unsupervised


3.  Fair allocation of texture space to charts

–  novel technique


4.  Mesh simplification

5.  Progressive, streamable encoding

–  contribution: efficient format
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Cleaning and Normalizing

•  All polygons are converted to triangles

•  Missing vertex normals are generated

•  Extraneous data is deleted

•  Complex scene hierarchies and instanced 

geometry is flattened to a single mesh

•  Vertex data is scaled to a uniform size
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Creating Charts

•  Retexturing

– Creates new, single texture from model


•  Each triangle could be placed in texture

– Not great for simplification


•  Instead, partition mesh into flat regions

•  Starts with a chart for every triangle

•  Priority queue of chart merges

– Ordered by error term incorporating 

compactness and planarity
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•  Flat, disc-like regions

•  Compact
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Heuristic Examples
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Allocating Texture Space

•  Each chart is parameterized from 3D 

space to 2D texture space

•  Each chart is given a size in 2D space
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Allocating Texture Space

•  Original technique [Sander ‘01]

– L2(T) - root-mean-square stretch

– L∞(T) - maximum stretch


•  L2(T) is used because

– “unfortunately there are a few triangles for 

which the maximum stretch remains high”

•  With our larger set of models, so is L2!

•  A chart with high L2(T) can allocate too 

much space, leaving little room
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Allocating Texture Space




•  L2c - chart’s texture stretch

•  Ac - chart’s surface area in 3D

•  A’c - chart’s area in the original texture

•  ΣL2, ΣA, ΣA’ – sum across all charts
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Mesh Simplification

•  We use technique based on [Garland ‘97] 

and [Sander ’01] using quadric error and 
texture stretch


•  See paper for unsupervised stopping 
heuristic
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Ideal Progressive Encoding

1.  Simplified base mesh can be 

downloaded and displayed without 
downloading the rest


2.  Vertex data can be streamed, allowing a 
client to continuously increase mesh 
detail


3.  The mesh’s texture can be progressively 
streamed, allowing a client to increase 
texture detail
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File Format

•  Existing formats

– OBJ, STL, PLY, FBX (60 listed on Wikipedia)


•  COLLADA

– Open standards-based XML format (2006)

– Widely supported: SketchUp, Blender, 3DS 

Max, Maya, Autodesk, Google Earth

– pycollada maintainer


•  But there are no existing usable 
progressive formats


24	
  



Base Mesh & Refinements

•  Base mesh encoded as COLLADA

– backwards compatible, unmodified clients


•  Progressive vertex data is a list of 
refinements: vertex additions, triangle 
additions, index updates
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Progressive Textures

•  No suitable progressive image formats


–  JPEG 2000, gif

•  Memory buffer requires O(full resolution) size


–  Microsoft DDS format

•  fixed-point only (like png)

•  not well supported


•  Full resolution is resized to multiple LODs

–  1x1, 2x2, 4x4, … 512x512, 1024x1024, …

–  Also called mipmaps, each encoded as JPEG

–  Concatenated together into TAR file


•  Achieves good compression

•  Allows client to index into file, e.g. HTTP Range request
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Evaluation

•  Render efficiency

– How much does batching help?


•  File Size

– How does conditioning affect file size?


•  Perceptual Error

– How much does conditioning change how 

models look?
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Render Efficiency
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File Size – Base Mesh
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Perceptual Error
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•  Delta E < 1 not noticeable by average human

•  Delta E of 3-6 are commonly-used tolerances 

for commercial printing 
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Conditioning Contributions

•  Unsupervised

•  Apportioning texture space fairly

•  Efficient progressive encoding

•  A complete, robust conversion framework
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Questions?


open3dhub.com

sirikata.com




�

@jterrace

jterrace@cs.princeton.edu
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