
Encapsulated Functions:
Fortifying Rust’s FFI in Embedded Systems

Leon Schuermann
lschuermann@princeton.edu

Princeton University
Princeton, New Jersey, USA

Arun Thomas
arun@zerorisc.com

zeroRISC Inc.
Somerville, Massachusetts, USA

Amit Levy
aalevy@princeton.edu
Princeton University

Princeton, New Jersey, USA

Abstract
Memory-safe languages like Rust are increasingly popular
for systems development. Nonetheless, practical systems
must interact with code written in memory-unsafe languages.
This is especially true in security and safety-critical em-
bedded systems, where subsystems such as cryptographic
implementations are subject to industrial and governmen-
tal certification requirements. Direct interactions with such
libraries, however, expose memory-safe languages to sig-
nificant risks: Any single bug in either the foreign code or
the cross-language interactions may arbitrarily violate the
memory safety of the wrapping language.

We present Encapsulated Functions, a framework for safely
invoking untrusted code in a memory-safe system with min-
imal overheads. Encapsulated Functions combines hardware-
based memory protection mechanisms with a set of Rust type
abstractions to facilitate safe interactions with untrusted and
unmodified third-party libraries.

CCS Concepts: • Computer systems organization → Em-
bedded software; • Software and its engineering → Soft-
ware safety; • Security and privacy → Operating sys-
tems security.

Keywords: Rust, memory safety, foreign function interface,
memory protection
ACM Reference Format:
Leon Schuermann, Arun Thomas, and Amit Levy. 2023. Encap-
sulated Functions: Fortifying Rust’s FFI in Embedded Systems.
In Kernel Isolation, Safety and Verification (KISV ’23), October 23,
2023, Koblenz, Germany. ACM, New York, NY, USA, 8 pages. https:
//doi.org/10.1145/3625275.3625397

1 Introduction
Systems are increasingly built using modern, memory-safe
languages such as Rust, Go or Swift. These languages can

This work is licensed under a Creative Commons Attribution International
4.0 License.
KISV ’23, October 23, 2023, Koblenz, Germany
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0411-6/23/10.
https://doi.org/10.1145/3625275.3625397

aid developers in writing correct software and prevent en-
tire classes of bugs due to their design. However, practi-
cal systems must often integrate existing libraries, such as
cryptographic implementations written in non-memory safe
languages or provided in the form of binary blobs. Unfortu-
nately, bugs in those libraries can arbitrarily violate memory
safety of the wrapping language. Even internally correct
libraries may break safety guarantees in subtle ways due to
differing cross-language semantics. We argue that memory-
safe languages should be able to invoke unsafe, unmodified
third-party libraries safely, and with minimal overhead.

These problems are particularly pronounced in the context
of secure and safety-critical embedded systems, where cer-
tain subsystems, such as cryptography, timing-critical con-
trol loops, and wireless communication, require industrial or
governmental certification. Rewriting existing implementa-
tions in a memory-safe language is often not feasible: Apart
from development and re-certification overheads, software
implemented in industry-standard programming languages
benefits from a mature ecosystem of toolchains, verification
infrastructure, established best practices, and alignment to
industrial certification processes. For example, the flight con-
trol software of the Airbus A380 is verified to be sufficiently
bounded on its worst-case execution time (WCET), an im-
portant functional safety property, using analysis techniques
currently only available for C [1, 2]. Similarly, industry stan-
dards are written for C-based implementations.
Despite these external constraints enforcing the use of

non-memory safe languages like C, evidence suggests that
memory-safe languages make it easier to write correct code.
According to Microsoft, around 70% of security vulnerabili-
ties addressed in Microsoft products are caused by memory
safety issues [14]. Even within the space of cryptographic
libraries, an empirical study attributes 37.2% of vulnerabil-
ities to memory safety issues [5]. A report by Google indi-
cates that with the usage of Rust as a memory-safe language
in Android 13 the frequency of these issues has dropped
significantly—from 76% to 35% [23]. The absence of memory-
safety issues is required to maintain a system’s functional
safety and security, both especially important properties for
many embedded systems.
In fact, Rust is uniquely suited for the requirements of

these constrained environments: Its compilation to native

41

https://orcid.org/0000-0002-1429-7808
https://orcid.org/0009-0005-7820-7487
https://orcid.org/0000-0003-1479-8917
https://doi.org/10.1145/3625275.3625397
https://doi.org/10.1145/3625275.3625397
https://doi.org/10.1145/3625275.3625397
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3625275.3625397&domain=pdf&date_stamp=2023-10-23

KISV ’23, October 23, 2023, Koblenz, Germany Schuermann et al.

machine code, static memory management, and use of zero-
cost abstractions promises to support systems with strict
resource and timing constraints. Moreover, its use of a static
and strong type system alongside an ownership-based mem-
ory management model establishes both spatial (e.g., pre-
venting out-of-bounds accesses) and temporal (e.g., accessing
reclaimed memory) memory safety. Projects such as the Tock
embedded operating system demonstrate the feasibility of
Rust in severely resource-constrained devices [10].
A reasonable step towards memory-safety in these sys-

tems may be to take advantage of Rust’s safety guarantees
wherever possible, and integrate existing legacy or certified
implementations of specific subsystems. Unfortunately, it is
hard to correctly interact with foreign, unsafe code from a
memory-safe language like Rust; any single memory-safety
issue in the foreign code can break Rust’s memory safety
arbitrarily. Moreover, even if foreign code operates correctly,
the interactions between such code and Rust can still wreak
havoc: Rust has an extensive set of safety requirements that
must be maintained, which forbid many otherwise legal be-
haviors in foreign languages. Notably, these requirements are
not just limited to spatial and temporal safety. Rust further
places extensive restrictions on valid values. For example, a
bool type must have a value of either 0 or 1 [21]. Simply hav-
ing a bool-reference to any other value in scope (without
dereferencing it) is undefined behavior. Other such viola-
tions include a null-reference, or an enum-discriminant not
included in its type-definition.
To facilitate safe cross-language interactions, this paper

presents Encapsulated Functions: a framework to execute un-
trusted foreign code in the context of a memory-safe system.
Making Encapsulated Functions special is its ability to work
in severely resource-constrained embedded systems, such as
microcontrollers, and it being able to safely execute unmodi-
fied binary code. These properties make it uniquely suited
to foster adoption of safe programming languages in safety
and security critical embedded devices, while allowing users
to reuse existing industrially-certified C libraries.
Throughout this paper we illustrate the two interoper-

ating mechanisms composing Encapsulated Functions: an
efficient hardware-based memory isolation mechanism, us-
ing hardware features commonly found in modern micro-
controller systems, and a set of type-level abstractions to
interact with untrusted foreign memory. We further demon-
strate the applicability of our system by integrating it with
the Tock embedded OS and implementing an HMAC-based
one-time password generator (HOTP) on the OpenTitan sili-
con root-of-trust (RoT) platform, using its C-based CryptoLib
cryptography library.

2 Background
Throughout this section we provide an overview of existing
hardware- and software-based isolation mechanisms.

2.1 Hardware-Mediated Process Isolation
Operating system processes are well-suited to isolate un-
trusted code. As a process operates in its own, isolated ad-
dress space, memory-safety violations are contained within
this process. Furthermore, a process does not have unlimited
control over the execution of other processes. Instead, it can
signal events and share data with other processes through
OS-mediated channels, such as UNIX domain sockets.
Unfortunately, such IPC-based isolation mechanisms in-

duce significant overheads when used for individual function
calls. As the isolated function executes in a different address
space, its parameters must be serialized and transferred into
the remote process. Upon return from the function, the re-
mote process must further serialize its result and transfer it
back to the original process. Every such transition induces
a full context switch which saves the currently executing
process’ state, performs scheduling decisions in the kernel,
and finally restores the to be scheduled process’ state. The
required extraneous memory allocations and context switch
overheads exceed resources available in many constrained
embedded systems. Calls into other dynamically-scheduled
units of execution also introduce unpredictable delays.

2.2 Software-Based Fault Isolation
In contrast to hardware-based isolation techniques, which
execute untrusted code and fault upon executing certain
dangerous interactions (such as memory writes), Software-
Based Fault Isolation (SFI) ensures that such interactions
are never issued in the first place [24]. This can be achieved
through an ahead-of-execution analysis of the untrusted
binary to ensure that all potentially dangerous instructions
are limited to a given protection domain, modification the
untrusted binary to introduce runtime checks ahead of any
potentially dangerous instructions, or a combination of both.
While SFI does not require hardware isolation support

and avoids significant context-switch overheads to switch
between trusted and untrusted code, it is not able to isolate
arbitrary untrusted and unmodified binaries. Still, its tightly
defined execution model provides inspirations for this work;
specifically we mirror Native Client’s clear separation of and
switches between trusted and untrusted contexts through
the trampoline and springboard mechanisms [25].

3 Design
In this section we present Encapsulated Functions, a frame-
work to execute untrusted foreign code in the context of
a single-threaded memory-safe system. Encapsulated Func-
tions is composed of two interoperatingmechanisms—lightweight
context switches, an implementation of function calls engag-
ing hardware-based memory protection, and a set of type-
level abstractions for safely interacting with untrusted for-
eign memory, which we present separately.

42

Encapsulated Functions: Fortifying Rust’s FFI in Embedded Systems KISV ’23, October 23, 2023, Koblenz, Germany

RAM Flash

MMIO

Encapsulated
Functions RAM

.data

.bss

.stack

Rust Allocation

Rust
Allocation

Rust Stack Rust .text Rust .rodata

Encapsulated
Functions Flash
.text
.rodata

App
Flash

Flash Controller
HMAC

Power Management

Figure 1. Memory regions accessible to Encapsulated Func-
tions within the larger, unified microcontroller address space
(highlighted in white). If required, functions can be granted
permissions to access certain MMIO peripherals. Larger re-
gions may be segmented into multiple smaller allocations,
provided sufficient memory protection resources.

We design Encapsulated Functions to protect the memory-
safe,wrapping language against any soundness issues caused
by foreign code, or interactions with foreign code or memory.
In the variant described in this paper, foreign code is largely
trusted for confidentiality and assumed to be buggy, but not
actively malicious (e.g., address leaks to foreign code are
deemed acceptable). We indicate when this design can be
adjusted to strengthen its threat model.

3.1 Hardware-based Memory Protection
Untrusted code can arbitrarily break Rust’s safety assump-
tions through simple memory accesses. To prevent this, En-
capsulated Functions uses memory protection mechanisms
integrated into modern microcontroller systems. Such mech-
anisms are increasingly common in even themost constrained
embedded platforms, like theMemory Protection Unit (MPU)
present in ARM Cortex-M0+ cores, or the RISC-V Physi-
cal Memory Protection (PMP). Compared to the more com-
plex memory management units (MMUs) present in most
modern general-purpose CPUs, these memory protection
mechanisms have very limited functionality. They gener-
ally do not feature support for virtual address spaces and
often support only a very limited set of memory regions with
coarse-grained alignment constraints. For instance, the ARM
Cortex-M0+ MPU supports defining access-permissions for
8 memory regions, where each region’s start address must
be aligned to a multiple of the region’s size in bytes.
Unfortunately, restrictions on the number of protection

regions and their granularity hinder us from defining fine-
grained per-allocation protection rules. Instead, Encapsu-
lated Functions provides foreign code with access to a few,
sufficiently large memory regions, illustrated in Figure 1.
These regions contain at least the foreign code’s binary, as
well as a given amount of RAM. To maintain memory safety,

writeable memory regions do not overlap with any Rust al-
locations. Separating memory accessible to Rust and foreign
code trivially maintains Rust’s memory-safety, but is not
particularly useful on its own; Section 3.2 presents consider-
ations for interacting with this memory.
To enforce these memory protection rules, Encapsulated

Functions must switch to a lower privilege level when execut-
ing untrusted functions. For this, we use the same hardware
mechanisms as employed for context switches to processes.
However, our isolation granularity of function invocations,
compared to scheduled and concurrent execution units such
as OS processes, allow us to optimize this switching process
significantly; we refer to this mechanism as function calls
through lightweight context switches. Importantly, this mech-
anism maintains the same synchronous execution model as
regular function calls, avoiding overheads of saving state as
required when invoking an asynchronous task.

To invoke a function, privileged Rust code (mirroring the
SFI trampoline mechanism) prepares the function’s execu-
tion environment by placing function call arguments in their
corresponding registers and onto a newly allocated separate
stack, located within a foreign-code accessible, writeable
memory region. This process implements and follows the
untrusted binary’s ABI. To strengthen guarantees concern-
ing confidentiality, the priviliged code may wish to further
clear other unused registers. To allow foreign code to pass
control back to the privileged Rust code, we use an analog
to the springboard approach from SFI and set the return
address register to a well-known inaccessible or privileged
and immutable instruction. This ensures that an attempted
function return by the untrusted code will trigger a context
switch back into the privileged execution context. Finally, the
function is executed by switching to a lower privilege mode,
enforcing hardware memory protection, and setting the pro-
gram counter (PC) accordingly. Upon return, the privileged
code must assume all registers to be clobbered. Such a func-
tion call largely avoids the overhead of a full context switch,
which would include scheduling decisions, and saving and
restoring a full process execution environment.

The foreign code may choose to never return to the spring-
board instruction, violating liveness guarantees. The system
may optionally use a timer-interrupt to switch back to privi-
leged code in the case that foreign code does not return.

3.2 Unsafe Cross-Language Interactions
The lightweight context switch mechanism of the previous
section is sufficient to fully isolate untrusted code in the
context of a memory-safe system. However, such an overly
constrained system has limited utility; Rust code will need to
interact with foreign code by passing data to functions and
interpreting returned results. These interactions, however,
introduce a yet another way to violate memory safety: While
all objects in foreign memory are sufficiently constrained
concerning spatial- and temporal-safety (memory accesses

43

KISV ’23, October 23, 2023, Koblenz, Germany Schuermann et al.

by foreign code are limited to the time this function is exe-
cuting and do not overlap any Rust allocations), they do not
necessarily conform to the safety constraints as illustrated
in Section 1; specifically they may not be valid values.
Furthermore, depending on how memory is divided be-

tween Rust and foreign code, this mechanism may also en-
danger Rust’s guarantees around temporal memory safety.
For example, if a system were to reuse the Encapsulated
Functions’ stack memory region while the foreign code is
not running, references into this memory may then poten-
tially alias Rust allocations and would thus be able to cause
undefined behavior.
One possible approach to overcome this limitation are

pseudo-pointers (for instance, as used by Galeed [16]). En-
capsulated Functions would pass such pointers to foreign
code, which can provide them back to trusted Rust accessor
functions that provide access to a limited set of Rust alloca-
tions. Unfortunately, this model has multiple issues in the
context of Encapsulated Functions. For instance, each such
memory access would incur a lightweight context switch—a
significant overhead compared to other memory protection
mechanisms like Intel MPK. Furthermore, usage of accessor
methods requires modification of foreign code, which would
be in conflict with our requirements. Instead, we develop a
set of type-abstractions which allow both Rust and foreign
code to directly access shared memory, while maintaining
Rust’s safety requirements.

3.2.1 Rust Primitives to Access Foreign Memory. To
eliminate the aforementioned safety issues when interacting
with foreign code, we propose a set of type-level abstractions
for Rust that facilitate safe interactions with foreign memory.
Our abstractions place an explicit focus on soundness and
runtime-efficiency. In this section we introduce select Rust
language constructs useful for designing these abstractions.
Raw Pointers act as the foundation of our type abstrac-

tions. Rust’s raw pointers (such as *mut u8) are not subject
to the same constraints that Rust values or references are.
Retaining a mis-aligned, dangling or inaccessible pointer to
some invalid value is safe, so long as this pointer is never
dereferenced or cast into a Rust reference. For these reasons,
dereferencing Rust’s raw pointers is an unsafe operation.

ValidValues.To support safely referencingmemorywhich
may not contain a valid instance of some type T, Rust pro-
vides the MaybeUninit<T> type [20]. This type can be used
to represent a memory allocation that has the same size,
alignment and ABI as a type T, but does not support safely
dereferencing it. Still, as this type is guaranteed to be well-
aligned and contained in accessible memory, writing to it is a
safe operation. These semantics are suitable to wrap foreign
memory, which cannot be guaranteed to always conform to
Rust’s requirements on valid values [21].
Mutable Aliasing. Additionally, Rust’s type system dis-

tinguishes between shared (immutable) references, for which

it assumes that referenced memory cannot be mutated, or
unique (mutable) references, which reference memory that
can only be mutated through this reference. These restric-
tions prevent mutable aliasing, where a given memory lo-
cation is mutated and referenced by at least one other Rust
reference simultaneously. However, foreign code does not
have to adhere to these constraints: In C, two pointers can
generally coexist while referencing (partially) overlapping
allocations1. Rust provides an escape hatch to circumvent
these aliasing restrictions, namely the UnsafeCell<T> type.
A shared (immutable) reference to this type is allowed to
point to data that is being modified [19].
As a consequence, a raw pointer to some type T can be

converted into a shared reference of some UnsafeCell< ⌋
MaybeUninit<T>>, assuming the pointer is well-aligned, fully
contained in mutably accessible memory, and not aliasing
other Rust allocations not contained in an UnsafeCell or
of a different type. A reference to this composite type can
be used to safely write to its backing memory, even if it
were to alias another UnsafeCell<MaybeUninit<U>> refer-
ence over a different type U. Still, such a reference cannot be
safely dereferenced, as it is not guaranteed to contain a valid
instance of type T.
Finally, for Rust to safely access such references into for-

eign memory, their memory contents must be validated to
conform to Rust’s requirements on valid values. For instance,
a bool type is required to have a numeric value in {0, 1}
[21]. The memory must stay consistent with these require-
ments for the entire duration that a dereferencable (non-
MaybeUninit) reference is in scope. This cannot be guaran-
teed in the case of concurrent execution of Rust and foreign
code. Thus, we place a single-threaded restriction on the
Encapsulated Functions execution model: A foreign binary
is always executed within a single thread, and only a single
Rust thread may execute foreign functions or access foreign
memory at any given time2.
Nonetheless, the aforementioned validity of values can

be violated from safe Rust even without handing over con-
trol to the foreign code. Because C pointers may arbitrarily
alias memory allocations, a Rust-issued write through one
reference may modify the content of another reference. For
instance, a C binary may provide Rust with two byte-sized
pointers to the same memory, one represented as a bool
and another as a u8. While the numerical value 2 is a valid
member of the u8 type, it is not valid for the bool type. Thus,
validated references can only be assumed to remain valid
until either control is handed over to the untrusted foreign
code, or foreign memory is modified from within Rust.

1C does place restrictions around aliasing across incompatible types.
2In Rust, this can be achieved by marking the Encapsulated Functions
runtime type as Send (allowed to cross thread-boundaries), but not Sync
(not safe to share between threads).

44

Encapsulated Functions: Fortifying Rust’s FFI in Embedded Systems KISV ’23, October 23, 2023, Koblenz, Germany

EFPtr<
T

>

EFMutRef<
'alloc,
T

>

EFMutVal<
'alloc,
'access,
T

>

upgrade() validate()

as_ptr() as_ref()

write()

AllocScope AccessScope

alloc() invoke()

&mut

& &

&mut &mut

get_field() ->
EFMutRef<'_, U>

(for structs)

&T

(for primitives)

Figure 2. Typestate-transitions between the EFPtr,
EFMutRef, and EFMutVal reference types for foreign
memory. Pointers can be converted into more capable
reference types subject to runtime checks. Reference
types are bound to compile-time enforced allocation- and
access-scopes, which expire on changes to the foreign-code
accessible memory regions or memory writes and foreign
code execution, respectively.

3.2.2 Safe Type-Abstractions for ForeignMemory. We
can use the presented Rust primitives to establish a set of
type-level abstractions which safely interact with foreign
memory. They integrate with an allocator that can allocate
objects within foreign memory and track whether a given al-
location is contained in said memory. The type-abstractions
further interact with the mechanism to hand over control to
foreign code, in order to invalidate any validated references
across such invocations. Our type-abstractions follow the
typestate programming paradigm, which encodes changes
in the validation state of a foreign memory reference as a
transition between types, which in turn expose a set of safe
methods applicable in that state [3]. Notably, we further uti-
lize Rust’s lifetimes to impose restrictions on the duration
of validity of certain type representations. Throughout this
section we present types applicable to mutably accessible
memory (i.e. referencing RAM); our implementation pro-
vides an analog set of types for immutable memory (e.g.,
memory-mapped flash). We illustrate the interactions be-
tween our type-abstractions in Figure 2.
As illustrated in Section 3.2.1, Rust’s raw pointers form

the foundation of our type abstractions. The EFPtr<T> type
wraps a Rust raw pointer and can be passed across FFI bound-
aries. It exposes convenience methods useful for working
with Encapsulated Functions and prevents type confusion,
but can be safely constructed from arbitrary raw pointers.

If an EFPtr<T> points to some well-aligned type T wholly
contained in mutably accessible foreign memory, it can be
converted into an EFMutRef<'alloc, T>. This type allows

writing through the reference, but does not support deref-
erencing its memory. It thus represents a useful interme-
diate type: Even across invocations of untrusted code or
modifications of foreign memory, an EFMutRef is still guar-
anteed to be well-aligned and fully contained in foreign
memory, avoiding re-validation of these properties. The
EFMutRef<'alloc, T> type internally wraps an &'alloc
UnsafeCell<MaybeUninit<T>> shared reference, and is bound
to an allocation scope 'alloc: To ensure that references into
foreign memory never outlive the foreign memory reserva-
tion itself, we introduce allocation scope marker types. These
types serve as a proxy to bind references into foreignmemory
to Rust’s rules around references and lifetimes. For instance,
the constructor of an EFMutRef borrows a shared reference
to an instance of the AllocScopemarker type, for the entire
lifetime of the resulting EFMutRef<'alloc, T> reference.
As constructing such an AllocScope is marked as an unsafe
operation, an allocator can ensure that only one such scope
is accessible at any given time. By handing out an allocation
scope with a limited Rust lifetime, set to expire before releas-
ing the foreign memory reservation, Encapsulated Functions
prevents retaining dangling references.
In turn, if an EFMutRef<'alloc, T> contains a valid in-

stance of type T, it can be converted into an EFMutVal< ⌋
'alloc, 'access, T>. To implement this check, we re-
quire that types provide an unsafe validate method which,
given a well-aligned and accessible raw pointer, must es-
tablish whether the referenced value is a valid member of
the given type. Notably, for types where every possible
memory state represents a valid instance of said type, this
method may be implemented as a no-op3. The EFMutVal< ⌋
'alloc, 'access, T> type is further bound to an access
scope 'access, conceptually similar to allocation scopes.
An AccessScope is issued by the facility to execute un-
trusted code, which must ensure that only a single instance
of this type can exist at any given time. Instantiating an
EFMutVal<'alloc, 'access, T> borrows a shared refer-
ence to this AccessScope for the entire lifetime of the re-
sulting instance. However, operations which mutate foreign
memory or execute untrusted code borrow a unique refer-
ence to an AccessScope, forcing all shared borrows to be out
of scope. In practice, this ensures that access scopes cannot
span across writes to foreign memory or invocations of the
foreign code; hence no validated references remain in scope
across operations that may invalidate them.
Figure 3 illustrates the interactions between the alloca-

tion and access scopes, foreign memory allocations (im-
plemented using Rust closures), writes to foreign objects,
and invoking foreign functions. It is worth noting that the

3MaybeUninit nonetheless requires such allocations to be initialized; the
compiler may otherwise determine them to be undefined (undef / poison)
[18, 20]. While in practice the compiler is unable to track this taint through
invocations of foreign code, to comply with this requirement Encapsulated
Functions requires explicit initialization of all foreign memory.

45

KISV ’23, October 23, 2023, Koblenz, Germany Schuermann et al.

let (mut outer_alloc, mut access) = rt.scopes();

// Allocates a [u8; 4] on the foreign stack
rt.alloc_stacked::<[u8; 4]>(

&mut outer_alloc, |array, inner_alloc| {
// array: EFRef<'_, [u8; 4]>
array.write([0, 1, 2, 3], &mut access);

let validated = array.validate(&access);
println!("{:?}", validated);

rt.invoke(ForeignFunction::ZeroArray {
array: array.as_ptr(),
length: 4,

}, &mut access);

// Would not compile, as `validated` is
// bound to the previous access scope:
// println!("{:?}", validated);

let revalidated = array.validate(&access);
println!("{:?}", revalidated);

// `array` cannot escape this closure,
// it is bound to the `inner_alloc` scope.

}
)

Access Scope
Allocation Scope

Figure 3. A simplified example outlining the interactions
between the Encapsulated Functions runtime, EF* reference
types, and the allocation- and access-scope markers: By bind-
ing EFMutRef references to their originating allocation scope
scope, we eliminate dangling references. Validated EFMutVal
references are further bound to an access scope, which ex-
pires upon foreign function execution or when foreign mem-
ory is modified.

aforementioned scoping rules are enforced at compile time,
through references to scope marker types. This ensures that
improper use of references causes compile-time errors, and
scope-enforcement does not induce runtime overhead. Fur-
thermore, all introduced wrapper types (EFPtr, EFMutRef,
EFMutVal) have an identical memory layout, equivalent to
that of the underlying pointer type. In many cases, compiler
optimizations can thus elide explicit conversions between
these types.

4 Case Study
To evaluate the applicability and performance of Encapsu-
lated Functions, we integrate a proof-of-concept implemen-
tation into the Tock embedded operating system. The Tock
kernel is implemented in Rust and relies on the Rust type sys-
tem for many of its safety guarantees. It features a stable ABI
and uses hardwarememory protectionmechanisms to isolate
preemptively scheduled, unprivileged and language-agnostic
processes. While Tock supports both ARM Cortex-M and 32
bit RISC-V platforms, our current implementation targets

only RISC-V systems and depends on a Physical Memory
Protection (PMP) unit.
For our evaluation, we choose to target the OpenTitan

open-source silicon root-of-trust (RoT) system synthesized
for the ChipWhisperer CW310 FPGA board. OpenTitan is a
mature RISC-V based RoT platform integrating a set of hard-
ened cryptography primitives. It encompasses CryptoLib, a
C-library to interact with these primitives and provide high-
level cryptography interfaces. We demonstrate Encapsulated
Functions by integrating the HMAC subsystem of CryptoLib
into the Tock kernel. Encapsulated Functions has also been
verified to work on other RISC-V targets supported by Tock,
without any target-specific modifications.

Our implementation requires a change to Tock’s RISC-V
trap handler implementation, in order to remove hard-coded
assumptions about interactions with user-mode code. No
other modifications to Tock’s core kernel infrastructure or ar-
chitecture support are required. The Encapsulated Functions
runtime and type abstractions are implemented as a Rust
crate with 917 lines of code, including a single inline RISC-V
assembly block of 93 instructions. Importantly, Encapsulated
Functions can co-exist with regular Tock processes despite
sharing common resources, such as the PMP.
When switching to a process or invoking a foreign func-

tion, the systemmust configure the PMP to enforce an appro-
priate set of memory access rules. Once configured, repeated
executions of the same process or invocations of the same
foreign binary do not require re-configuration of the PMP.
The overhead required by PMP configuration is largely inde-
pendent of the number of memory regions configured and,
using an optimized configuration routine, takes approx. 240
instructions in the Tock operating system. Once the PMP
is configured, invoking a foreign function through a light-
weight context switch induces an overhead of approx. 120
instructions. This includes setting of the foreign code’s stack,
re-configuring the CPU for user-mode, and switching exe-
cution to the function code (64 instructions), as well as 55
instructions to handle a system trap, interpret the context
switch reason, extract the function’s return values and restor-
ing othermachine-state on the return path. In comparison, an
end-to-end context switch to a Tock process requires approx.
530 instructions on a RISC-V RV32IMC system. This includes
scheduling the process, restoring the userspace register file,
re-configuring the CPU for user-mode, as well as saving the
user-space context and machine-state configuration on the
return path; it excludes any kernel work, PMP configuration
or debug information tracking. Table 1 summarizes these
measurements.
To perform an HMAC calculation, both the key and data

parameters need to be located in CryptoLib-accessible mem-
ory, which we achieve by copying them into appropriately
sized allocations on the isolated Encapsulated Functions
stack. These operations are conducted through our type
abstractions illustrated in Section 3.2. Notably, due to the

46

Encapsulated Functions: Fortifying Rust’s FFI in Embedded Systems KISV ’23, October 23, 2023, Koblenz, Germany

PMP Pre-
configured

Lightweight
Context Switch

Tock Process
Context Switch

✓ 120 instr. 530 instr. 23%
✗ 360 instr. 770 instr. 47%

Table 1. End-to-end overheads induced by lightweight con-
text switches and context switches to Tock processes, mea-
sured on a RISC-V RV32IMC system. In both cases, PMP re-
configuration constitutes a substantial overhead. If the PMP
is already configured for a given process or foreign binary,
it does not have to be re-configured.

fine-grained typestate information contained in these refer-
ence types, in many cases the compiler is able to optimize
these abstractions into direct memory accesses. This holds
as long as memory accesses are not made through indirect
pointers located in foreign memory, and as long as read
operations are limited to types where every memory state
constitutes a valid instance of that type.

5 Related Work
There is a significant body of research exploring safety around
cross-language interactions and isolation techniques. For in-
stance, [13] establishes Cross-Language Attacks, an entirely
new set of attack vectors caused by cross-language inter-
actions, such as between Rust and C. The Rust community
is addressing these issues by drafting documentation and
guidelines around unsafe code and FFI usage [21, 22].
Contributions such as Galeed, XRust, TRust, PKRU-Safe,

and SDRaD-FFI utilize heap isolation techniques to protect
against a subset of these safety issues [4, 6, 7, 12, 16].Whereas
Galeed, PKRU-Safe, and SDRaD-FFI use a hardware-based
memory protection mechanism to isolate Rust from foreign
code, TRust additionally employs SFI techniques to confine
unsafe Rust code to an untrusted memory domain. By modi-
fying foreign code to use pseudo pointers, Galeed supports
interactions with Rust objects. Similar to Encapsulated Func-
tions, XRust and TRust and Intra-Unikernel Isolation [17]
confine unsafe or foreign code to accessing limited mem-
ory respectively. Sandcrust uses IPC to automatically isolate
unsafe Rust code within a separate process [9]. Both Sand-
crust and SDRaD-FFI utilize serialization to convey (updated)
variables between Rust and untrusted code.

Works like RLBox and RLBox-Rust combine a set of type-
system abstractions with a WebAssembly sandbox to isolate
untrusted code from C++ and Rust [15, 26]. Furthermore,
progress on static analysis and SFI promises to alleviate over-
heads associated with hardware-based isolation techniques.
For example, [8] uses structural information of code within
representations such as WebAssembly to reduce the number
of runtime checks required with SFI. FFIChecker employs

static analysis techniques on the generated LLVM IR to iden-
tify potential cross-language memory management issues
[11].
Notably, most existing work around cross-language in-

teractions with Rust focuses on maintaining its spatial and
temporal memory safety properties; few contributions ad-
dress more subtle safety issues around valid values.

6 Conclusion
In this paper we present Encapsulated Functions, a frame-
work for integrating untrusted and unmodified code into a
memory-safe system. Through our prototype implementa-
tion we demonstrate the feasibility of using hardware-based
memory protection mechanisms present on modern micro-
controllers, along with a set of safe type-abstractions, to
facilitate safe interactions with foreign language code while
incuring minimal overheads. We further optimize the switch
to a hardware-isolated execution environment through our
lightweight context switches mechanism.
Compared to pior work in this field, Encapsulated Func-

tions is a particularly lightweight cross-language isolation
mechanism. It does not require a heap allocator, avoids spuri-
ousmemory allocations as required for IPC-based approaches,
and performs runtime validation of type and memory safety
lazily, solely for memory that is accessed by the memory-safe
language. Both the memory-safe language and foreign code
can access shared memory directly, without any runtime
indirection to bypass hardware protection mechanisms.

We implement Encapsulated Functions using the RISC-V
Physical Memory Protection (PMP) subsystem. Our type ab-
stractions for maintaining cross-language memory safety,
however, are independent of the memory protection mech-
anism used. We believe that these type abstractions can be
equivalently applied to similar mechanisms for other ar-
chitectures (e.g., the ARM Cortex-M MPU), more complex
Memory Mangement Units of general-purpose CPUs, and
userspace-configurable hardware memory protection imple-
mentations such as Intel MPK. We hope to explore these
additional application domains in future work.

This paper validates the design of Encapsulated Functions
and performs a limited set of performance evaluations by
integrating the OpenTitan CryptoLib HMAC subsystem into
the Tock embedded OS kernel. By demonstrating support for
a wider range of software libraries and porting Encapsulated
Functions to other operating systems we hope to further
evaluate the expressiveness of our solution. This will also
enable an extensive performance evaluation and allow us
to revisit certain design restrictions, such as Encapsulated
Functions’ single-threaded execution model.
Finally, we hope that this work will foster adoption of

memory-safe languages even in severely constrained embed-
ded systems, subject to industrial standards and certification
processes.

47

KISV ’23, October 23, 2023, Koblenz, Germany Schuermann et al.

References
[1] AbsInt Angewandte Informatik GmbH. [n. d.]. Analyzing execution

time with aiT. https://www.absint.com/ait/features.htm Accessed
10/07/2023.

[2] AbsInt Angewandte Informatik GmbH. 2005. AbsInt Enhances the
Safety of the A380. https://www.absint.com/releases/050427.htm Ac-
cessed 10/07/2023.

[3] Jonathan Aldrich, Joshua Sunshine, Darpan Saini, and Zachary Sparks.
2009. Typestate-Oriented Programming. In Proceedings of the 24th ACM
SIGPLAN Conference Companion on Object Oriented Programming Sys-
tems Languages and Applications (Orlando, Florida, USA) (OOPSLA ’09).
Association for ComputingMachinery, New York, NY, USA, 1015–1022.
https://doi.org/10.1145/1639950.1640073

[4] Inyoung Bang, Martin Kayondo, HyunGon Moon, and Yunheung
Paek. 2023. TRust: A Compilation Framework for In-process Isolation
to Protect Safe Rust against Untrusted Code. In 32nd USENIX Secu-
rity Symposium (USENIX Security 23). USENIX Association, Anaheim,
CA, 6947–6964. https://www.usenix.org/conference/usenixsecurity23/
presentation/bang

[5] Jenny Blessing, Michael A. Specter, and Daniel J. Weitzner. 2021. You
Really Shouldn’t Roll Your Own Crypto: An Empirical Study of Vul-
nerabilities in Cryptographic Libraries. arXiv:2107.04940 [cs.CR]

[6] Merve Gülmez, Thomas Nyman, Christoph Baumann, and Jan Tobias
Mühlberg. 2023. Friend or Foe Inside? Exploring In-Process Isolation
to Maintain Memory Safety for Unsafe Rust. arXiv:2306.08127 [cs.CR]

[7] Paul Kirth, Mitchel Dickerson, Stephen Crane, Per Larsen, Adrian
Dabrowski, David Gens, Yeoul Na, Stijn Volckaert, and Michael Franz.
2022. PKRU-Safe: Automatically Locking down the Heap between
Safe and Unsafe Languages. In Proceedings of the Seventeenth Euro-
pean Conference on Computer Systems (Rennes, France) (EuroSys ’22).
Association for Computing Machinery, New York, NY, USA, 132–148.
https://doi.org/10.1145/3492321.3519582

[8] Matthew Kolosick, Shravan Narayan, Evan Johnson, Conrad Watt,
Michael LeMay, Deepak Garg, Ranjit Jhala, and Deian Stefan. 2022.
Isolationwithout Taxation: Near-Zero-Cost Transitions forWebAssem-
bly and SFI. Proc. ACM Program. Lang. 6, POPL, Article 27 (jan 2022),
30 pages. https://doi.org/10.1145/3498688

[9] Benjamin Lamowski, Carsten Weinhold, Adam Lackorzynski, and
Hermann Härtig. 2017. Sandcrust: Automatic Sandboxing of Unsafe
Components in Rust. In Proceedings of the 9th Workshop on Program-
ming Languages and Operating Systems (Shanghai, China) (PLOS’17).
Association for Computing Machinery, New York, NY, USA, 51–57.
https://doi.org/10.1145/3144555.3144562

[10] Amit Levy, Bradford Campbell, Branden Ghena, Daniel B. Giffin, Pat
Pannuto, Prabal Dutta, and Philip Levis. 2017. Multiprogramming a
64kB Computer Safely and Efficiently. In Proceedings of the 26th Sym-
posium on Operating Systems Principles (Shanghai, China) (SOSP ’17).
Association for Computing Machinery, New York, NY, USA, 234–251.
https://doi.org/10.1145/3132747.3132786

[11] Zhuohua Li, Jincheng Wang, Mingshen Sun, and John C. S. Lui. 2022.
Detecting Cross-Language Memory Management Issues In Rust. In
Computer Security – ESORICS 2022: 27th European Symposium on Re-
search in Computer Security, Copenhagen, Denmark, September 26–30,
2022, Proceedings, Part III (Copenhagen, Denmark). Springer-Verlag,
Berlin, Heidelberg, 680–700. https://doi.org/10.1007/978-3-031-17143-
7_33

[12] Peiming Liu, Gang Zhao, and Jeff Huang. 2020. Securing Unsafe
Rust Programs with XRust. In Proceedings of the ACM/IEEE 42nd In-
ternational Conference on Software Engineering (Seoul, South Korea)
(ICSE ’20). Association for Computing Machinery, New York, NY, USA,
234–245. https://doi.org/10.1145/3377811.3380325

[13] Samuel Mergendahl, Nathan Burow, and Hamed Okhravi. 2022. Cross-
Language Attacks. In 29th Annual Network and Distributed System

Security Symposium, NDSS 2022, San Diego, California, USA, April 24-
28, 2022. The Internet Society. https://www.ndss-symposium.org/ndss-
paper/auto-draft-259/

[14] Matt Miller. 2019. Trends, challenges, and strategic shifts in the soft-
ware vulnerability landscape. https://github.com/microsoft/MSRC-
Security-Research/blob/master/presentations/2019_02_BlueHatIL/
2019_01%20-%20BlueHatIL%20-%20Trends,%20challenge,%20and%
20shifts%20in%20software%20vulnerability%20mitigation.pdf
Accessed 10/07/2023.

[15] Shravan Narayan, Craig Disselkoen, Tal Garfinkel, Nathan Froyd,
Eric Rahm, Sorin Lerner, Hovav Shacham, and Deian Stefan. 2020.
Retrofitting Fine Grain Isolation in the Firefox Renderer. In 29th
USENIX Security Symposium (USENIX Security 20). USENIX Associa-
tion, 699–716. https://www.usenix.org/conference/usenixsecurity20/
presentation/narayan

[16] Elijah Rivera, Samuel Mergendahl, Howard Shrobe, Hamed Okhravi,
and Nathan Burow. 2021. Keeping Safe Rust Safe with Galeed. In
Annual Computer Security Applications Conference (Virtual Event, USA)
(ACSAC ’21). Association for Computing Machinery, New York, NY,
USA, 824–836. https://doi.org/10.1145/3485832.3485903

[17] Mincheol Sung, Pierre Olivier, Stefan Lankes, and Binoy Ravindran.
2020. Intra-Unikernel Isolation with Intel Memory Protection Keys. In
Proceedings of the 16th ACM SIGPLAN/SIGOPS International Conference
on Virtual Execution Environments (Lausanne, Switzerland) (VEE ’20).
Association for Computing Machinery, New York, NY, USA, 143–156.
https://doi.org/10.1145/3381052.3381326

[18] The LLVM Contributors. 2023. LLVM Language Reference Manual.
https://llvm.org/docs/LangRef.html Accessed 10/07/2023.

[19] The Rust Contributors. 2023. The Rust Core Library – Struct
core::cell::UnsafeCell. https://doc.rust-lang.org/stable/core/cell/struct.
UnsafeCell.html Accessed 10/07/2023.

[20] The Rust Contributors. 2023. The Rust Core Library – Union
core::mem::MaybeUninit. https://doc.rust-lang.org/stable/core/mem/
union.MaybeUninit.html Accessed 10/07/2023.

[21] The Rust Contributors. 2023. The Rust Reference – Behavior considered
undefined. https://doc.rust-lang.org/reference/behavior-considered-
undefined.html#behavior-considered-undefined Accessed 10/07/2023.

[22] The Rust Contributors. 2023. The Rustonomicon. https://doc.rust-
lang.org/nomicon/ Accessed 10/07/2023.

[23] Jeffrey Vander Stoep. 2022. Memory Safe Languages in Android
13. https://security.googleblog.com/2022/12/memory-safe-languages-
in-android-13.html Accessed 10/07/2023.

[24] Robert Wahbe, Steven Lucco, Thomas E. Anderson, and Susan L. Gra-
ham. 1993. Efficient Software-Based Fault Isolation. In Proceedings
of the Fourteenth ACM Symposium on Operating Systems Principles
(Asheville, North Carolina, USA) (SOSP ’93). Association for Comput-
ing Machinery, New York, NY, USA, 203–216. https://doi.org/10.1145/
168619.168635

[25] Bennet Yee, David Sehr, Gregory Dardyk, J. Bradley Chen, RobertMuth,
Tavis Ormandy, Shiki Okasaka, Neha Narula, and Nicholas Fullagar.
2009. Native Client: A Sandbox for Portable, Untrusted x86 Native
Code. In 2009 30th IEEE Symposium on Security and Privacy. 79–93.
https://doi.org/10.1109/SP.2009.25

[26] Tianyang Zhou. 2023. Fine-grained Library Sandboxing for Rust Ecosys-
tem. Master’s thesis. proquest id:Zhou_ucsd_0033M_22362

48

https://www.absint.com/ait/features.htm
https://www.absint.com/releases/050427.htm
https://doi.org/10.1145/1639950.1640073
https://www.usenix.org/conference/usenixsecurity23/presentation/bang
https://www.usenix.org/conference/usenixsecurity23/presentation/bang
https://arxiv.org/abs/2107.04940
https://arxiv.org/abs/2306.08127
https://doi.org/10.1145/3492321.3519582
https://doi.org/10.1145/3498688
https://doi.org/10.1145/3144555.3144562
https://doi.org/10.1145/3132747.3132786
https://doi.org/10.1007/978-3-031-17143-7_33
https://doi.org/10.1007/978-3-031-17143-7_33
https://doi.org/10.1145/3377811.3380325
https://www.ndss-symposium.org/ndss-paper/auto-draft-259/
https://www.ndss-symposium.org/ndss-paper/auto-draft-259/
https://github.com/microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends,%20challenge,%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://github.com/microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends,%20challenge,%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://github.com/microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends,%20challenge,%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://github.com/microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends,%20challenge,%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://www.usenix.org/conference/usenixsecurity20/presentation/narayan
https://www.usenix.org/conference/usenixsecurity20/presentation/narayan
https://doi.org/10.1145/3485832.3485903
https://doi.org/10.1145/3381052.3381326
https://llvm.org/docs/LangRef.html
https://doc.rust-lang.org/stable/core/cell/struct.UnsafeCell.html
https://doc.rust-lang.org/stable/core/cell/struct.UnsafeCell.html
https://doc.rust-lang.org/stable/core/mem/union.MaybeUninit.html
https://doc.rust-lang.org/stable/core/mem/union.MaybeUninit.html
https://doc.rust-lang.org/reference/behavior-considered-undefined.html#behavior-considered-undefined
https://doc.rust-lang.org/reference/behavior-considered-undefined.html#behavior-considered-undefined
https://doc.rust-lang.org/nomicon/
https://doc.rust-lang.org/nomicon/
https://security.googleblog.com/2022/12/memory-safe-languages-in-android-13.html
https://security.googleblog.com/2022/12/memory-safe-languages-in-android-13.html
https://doi.org/10.1145/168619.168635
https://doi.org/10.1145/168619.168635
https://doi.org/10.1109/SP.2009.25

	Abstract
	1 Introduction
	2 Background
	2.1 Hardware-Mediated Process Isolation
	2.2 Software-Based Fault Isolation

	3 Design
	3.1 Hardware-based Memory Protection
	3.2 Unsafe Cross-Language Interactions

	4 Case Study
	5 Related Work
	6 Conclusion
	References

