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Abstract

Strictly serializable (linearizable) services appear to execute
transactions (operations) sequentially, in an order consistent
with real time. This restricts a transaction’s (operation’s)
possible return values and in turn, simplifies application
programming. In exchange, strictly serializable (linearizable)
services perform worse than those with weaker consistency.
But switching to such services can break applications.

This work introduces two new consistency models to ease
this trade-off: regular sequential serializability (RSS) and
regular sequential consistency (RSC). They are just as strong
for applications: we prove any application invariant that
holds when using a strictly serializable (linearizable) service
also holdswhen using an RSS (RSC) service. Yet they relax the
constraints on servicesÐthey allow new, better-performing
designs. To demonstrate this, we design, implement, and
evaluate variants of two systems, Spanner and Gryff, relaxing
their consistency to RSS and RSC, respectively. The new
variants achieve better read-only transaction and read tail
latency than their counterparts.

*CCS Concepts: · Information systems→ Parallel and

distributed DBMSs; Distributed database transactions.

*Keywords: distributed systems, consistency, databases

ACM Reference Format:

JeffreyHelt, MatthewBurke, Amit Levy, andWyatt Lloyd. 2021. Reg-

ular Sequential Serializability and Regular Sequential Consistency.

In ACM SIGOPS 28th Symposium on Operating Systems Principles

(SOSP ’21), October 26ś29, 2021, Virtual Event, Germany. ACM, New

York, NY, USA, 17 pages. https://doi.org/10.1145/3477132.3483566

1 Introduction

Strict serializability [74] and linearizability [36] are exem-
plary consistency models. Strictly serializable (linearizable)
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services appear to execute transactions (operations) sequen-
tially, in an order consistent with real time. They simplify
building correct applications atop them by reducing the num-
ber of possible values services may return to application
processes. This, in turn, makes it easier for programmers to
enforce necessary application invariants.
In exchange for their strong guarantees, strictly serializ-

able and linearizable services incur worse performance than
those with weaker consistency [10, 25, 39, 53, 54]. For ex-
ample, consider a read in a key-value store that returns the
value written by a concurrent write. If the key-value store is
weakly consistent, the read imposes no constraints on future
reads. But if the key-value store is strictly serializable, the
read imposes a global constraint on future readsÐthey all
must return the new value, even if the write has not yet
finished. Existing strictly serializable services guarantee this
by blocking reads [22], incurring multiple round trips be-
tween clients and shards [94, 95], or aborting conflicting
writes [94, 95]. These harm service performance, either by
increasing abort rates or increasing latency.
Services with weaker consistency models [5, 7, 44, 54],

however, offer application programmers with a harsh trade-
off. In exchange for better performance, they may break the
invariants of applications built atop them.

This work introduces two new consistency models to ease
this trade-off: regular sequential serializability (RSS) and reg-
ular sequential consistency (RSC). They allow services to
achieve better performance while being invariant-equivalent
to strict serializability and linearizability, respectively. For
any application that does not require synchronized clocks,
any invariant that holds while interacting with a set of
strictly serializable (linearizable) services also holds when
executing atop a set of RSS (RSC) services.
To maintain application invariants, a set of RSS (RSC)

services must appear to execute transactions (operations)
sequentially, in an order that is consistent with a broad set
of causal constraints (e.g., through message passing). We
prove formally this is sufficient for RSS (RSC) to be invariant-
equivalent to strict serializability (linearizability).

To allow for better performance, RSS and RSC relax some
of strict serializability and linearizability’s real-time guaran-
tees for causally unrelated transactions or operations, respec-
tively. For example, when a read returns the value written
by a concurrent write, instead of a global constraint, RSS
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imposes a causal constraintÐonly reads that causally follow
the first must return the new value.

But in addition to helping enforce invariants, strict serial-
izability’s (linearizability’s) real-time guarantees help appli-
cations match their users’ expectations. For instance, from
interacting with applications on their local machine, users
expect writes to be immediately visible to all future reads.
Applications built atopweakly consistent services can violate
these expectations, exposing anomalies.

Because RSS (RSC) relax some of strict serializability’s (lin-
earizability’s) real-time constraints, applications built atop
an RSS (RSC) service may expose more anomalies. But prior
work suggests anomalies are rare in practice [57], and further,
RSS and RSC include some real-time guarantees to make the
chance of observing these new anomalies small. They should
only be possible within short time windows (a few seconds).
Thus, we expect the difference between RSS (RSC) and strict
serializability (linearizability) to go unnoticed in practice.
To compose a set of RSS (RSC) services such that they

appear to execute transactions (operations) in some global
RSS (RSC) order, each must implement one other mechanism:
a real-time fence. We show how the necessary fences can be
invoked without changing applications.
Finally, to demonstrate the performance benefits permit-

ted by RSS and RSC, we design, implement, and evaluate vari-
ants of two existing services: Spanner [22], Google’s globally
distributed database, and Gryff [18], a replicated key-value
store. The variants implement RSS and RSC instead of strict
serializability and linearizability, respectively.
Spanner-RSS improves read-only transaction latency by

reducing the chances they must block for conflicting read-
write transactions. Instead, Spanner-RSS allows read-only
transactions to immediately return old values in some cases.
As a result, in low- and moderate-contention workloads,
Spanner-RSS reduces read-only transaction tail latency by
up to 49% without affecting read-write transaction latency.
Gryff-RSC improves read latency with a different ap-

proach. By removing the write-back phase of reads, Gryff-
RSC halves the number of round trips required between
application processes and Gryff’s replicas. As a result, for
moderate- and high-contention workloads, Gryff-RSC re-
duces p99 read latency by about 40%. Further, because Gryff-
RSC’s reads always finish in one round, it offers larger re-
ductions in latency (up to 50%) farther out on the tail.

In sum, this paper makes the following contributions:

• We define RSS and RSC, the first invariant-equivalent con-
sistency models to strict serializability and linearizability.

• We prove that for any application not requiring synchro-
nized clocks, any invariant that holds with strictly serial-
izable (linearizable) services also holds with RSS (RSC).

• We design, implement, and evaluate Spanner-RSS and
Gryff-RSC, which significantly improve read tail latency
compared to their counterparts.

Consistency models

Web servers

Key-value store

Client libraries

Messaging service

Web 
request …

…

Other processes

Worker

Worker

Application

Services

User-visible behaviors

Figure 1. An application deployed in a data center. It com-
prises the processes running on user devices, Web servers,
and asynchronous workers. They are supported by a pair
of services. The services’ consistency models significantly
impact application correctness and performance.

2 Background and Motivation

In this section, we first describe the typical structure of ap-
plications and their interaction with supporting services. We
then discuss the role consistency models play in these inter-
actions. Finally, we demonstrate how existing consistency
models offer difficult trade-offs to application programmers
and service designers.

2.1 Distributed Applications

Distributed applications can be split into two parts: a set of
processes executing application-specific logic and a set of
services supporting them. The application-specific processes
include those that respond interactively to users, such as
those executing on a user’s device and those they cooperate
with synchronously or asynchronously, such as Web servers
running in a nearby data center. The services provide generic,
reusable functionality, such as data storage [16, 22, 53, 54]
and messaging [82].
For example, consider a Web application deployed in a

data center (Figure 1). A user interacts with a browser on
their device. These interactions define the behaviors of the
application. Under the hood, the browser sends HTTP re-
quests to a set of Web servers. In processing a request, a
server reads and modifies state in a key-value store and ren-
ders responses. There are also worker processes that these
servers invoke asynchronously to perform longer running
tasks [38]. The set of processes running application-specific
logic are the clients of the services. The services are responsi-
ble for persisting application state, replicating it across data
centers, and coordinating between application components.

2.2 Motivating Example: Photo-Sharing App

Throughout the paper, we consider a simple but illustrative
example: a photo-sharing application. The application allows
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Invariants Possible Anomalies Performance

Consistency I1 I2 ISS A1 A2 A3 A4 Latency

Strict Serializability [74] ✓ ✓ ✓ never never never always ↑↑

Regular Sequential Serializability ✓ ✓ ✓ never never temporarily always ↑

Process-ordered Serializability [23, 55] ✓ ✗ ✗ never always always always −

I1 : ∀𝑃,∀𝑖 : 𝑖 ∈ 𝑃 .Album.list =⇒ 𝑃 .Album.photos[𝑖] .data ≠ null

I2 : ∀𝑊,∀𝑖 : Head(W.PhotoQ) = 𝑖 ∧W.Photo.id = 𝑖 =⇒ W.Photo.data ≠ null

ISS : Any invariant that holds with strict serializability.

A1 : Alice adds two photos; later, only one photo is in her album.
A2 : Alice adds a photo and calls Bob; Bob does not see the photo.
A3 : Alice sees Charlie’s photo and calls Bob; Bob does not see the photo.
A4 : Alice tries to add a photo but never receives a response.

Table 1. Comparing consistency models by which invariants hold, which anomalies are prevented, and the latency of operations.
I1 states an album never contains a photo with null data; I2 states a worker never reads a photo with null data.

users to backup and share their photos with other users while
handling compression and other photo-processing functions.
In our example application, photos are organized into

albums. Both photos and albums are stored in a globally
distributed, transactional key-value store. Each photo and
album has a unique key. A photo’s key maps to a binary blob
while an album’s key maps to structured data containing the
keys of all photos in the album. If a key is read but is not
present, the key-value store simply returns null.
In addition to the transactional key-value store, the ap-

plication uses a messaging service to enqueue requests for
asynchronous processing. For example, when a user adds a
high-resolution photo, the application enqueues the photo’s
key in the messaging service, requesting some worker pro-
cess create lower-resolution thumbnails of the image.

When a user adds a new photo to an album, a Web server
issues a read-write transaction: it creates a new key-value
mapping for the photo, reads the album, and writes back
the album after modifying its value to include a reference
to the newly added photo. Then it enqueues a request for
additional processing.

2.3 Consistency Models

The correctness and performance of an application are heav-
ily influenced by the consistency models of its supporting
services. A consistency model is a contract between a service
and its clients regarding the allowable return values for a
given set of operations. Services with stronger consistency
are generally restricted to fewer possible return values, so
it is easier for programmers to build a correct application
atop them. Restricting the allowable return values, however,
often incurs worse performance in these services and conse-
quently, in the application.

Invariants and anomalies. The stronger restrictions of
stronger consistency models enable applications to more
easily ensure correctness and provide better semantics to

users. The correctness of an application is determined by its
invariants, which are logical predicates that hold for all states
of an application (i.e., the combined states of all application
processes). The semantics for users are determined by the
rate of anomalies, which are behaviors the user would not
observe while accessing a single-threaded, monolithic appli-
cation running on a local machine with no failures. Table 1
shows some invariants and anomalies for our application.

Application logic relies on invariants to function correctly.
For the photo-sharing example, client-side application logic
assumes that if an album contains a reference to a photo, the
photo exists in the key-value store (I1). Similarly, workers
that receive a photo’s key through the messaging service
assume fetching the key from the key-value store will not
return null (I2).

Applications also attempt to present reasonable behaviors
to users, which is quantified by the rate of anomalies. Unlike
an invariant violation, the detection of an anomaly may
require information that is beyond the application’s state.
For example, once Alice adds a new photo to an album, Bob
not seeing it is an anomaly (A2). But detecting A2 requires
the application either to have synchronized clocks to record
the start and end times of Alice and Bob’s requests or to
somehow know that Alice communicated with Bob.

2.4 Strict Serializability is Too Strong

Strict serializability [74] is one of the strongest consistency
models. A service that guarantees strict serializability ap-
pears to execute transactions sequentially, one at a time, in
an order consistent with the transactions’ real-time order. As
a result, only transactions that are concurrent (i.e., both begin
before either ends) may be reordered. Further, strict serializ-
ability is composable: clients may use multiple services, and
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the resulting execution will always be strictly serializable
because real-time order is universal to all services [36].1

Strict serializability ensures a large set of invariants hold.
For example, it ensures both invariants hold for our photo-
sharing application. For I1, the application logic writes a
photo’s data and adds it to an album in a single transaction𝑇 .
Strict serializability then trivially ensures I1; because trans-
actions appear to execute sequentially, any other transaction
will be either before 𝑇 and not see the photo or after 𝑇 and
see both the photo in the album and its data. For I2, the ap-
plication logic first executes the add-new-photo transaction
and then enqueues a request to process it in the messaging
service. The real-time order and composability of strict seri-
alizability then ensures I2; the enqueue begins in real time
after the add-new-photo transaction ends, and thus, any pro-
cess that sees the enqueued request must subsequently see
the writes of the add-new-photo transaction.
Strict serializability also mitigates anomalies. As shown

in Table 1,A1,A2, andA3 never occur with a strictly serial-
izable key-value store. Because strictly serializable transac-
tions appear to execute sequentially, no writes are lost, and
its real-time guarantees ensure Bob’s transactions always
follow Alice’s after receiving her call.
Yet applications built atop strictly serializability services

are not perfect. For instance, asynchronous networks, tran-
sient failures, and a lack of fate sharing among components
can all cause anomalies that are beyond the scope of a con-
sistency model. A4 in Table 1 shows one example, which
could not occur on a local machine with no failures.

Strict serializability imposes performance costs. In ex-
change for ensuring invariants and preventing most anom-
alies, strict serializability imposes significant performance
costs on services. For instance, consider anomaly A3 in Ta-
ble 1, and assume Charlie is in the middle of adding a photo
when Alice sees it. Strict serializability mandates that any
subsequent read by any application server includes the photo,
even if Bob is on a different continent and Charlie’s transac-
tion has not finished. As a result, the key-value store must
ensure Alice’s transaction only includes Charlie’s photo once
all subsequent reads will, too.

Existing services provide this guarantee through a variety
of mechanisms. Some block read-only transactions during
conflicting read-write transactions [22]. Others incur mul-
tiple round trips between an application server and a set
of replicas [94, 95] or abort concurrent read-write trans-
actions [94, 95]. These mechanisms reduce performance by
increasing either read-only transaction latency or abort rates.

2.5 Process-Ordered Serializability is Too Weak

Because strict serializability incurs heavy performance over-
head, many services provide a weaker consistency model.

1This holds only with the reasonable assumption that individual transac-

tions do not span multiple services. This makes each strictly serializable

service equivalent to a linearizable łobject” [36].

The next strongest is process-ordered (PO) serializability,
which guarantees that services appear to execute transac-
tions sequentially, in an order consistent with each client’s
process order [23, 55]. PO serializability is weaker than
strict serializability because it does not guarantee that non-
concurrent transactions respect their real-time order. More-
over, PO serializability is not composable. Thus, process
orders across services can be lost.
Because PO serializability is weaker than strict serializ-

ability, it avoids some of its performance costs. For instance,
there are read-only transaction protocols that can always
complete in one round of non-blocking requests with con-
stant metadata in services with PO serializability, while this
is impossible with strict serializability [56].

PO serializability provides fewer invariants. In exchange
for better performance, weaker consistency models, like PO
serializability, present application programmers with a harsh
trade-off: fewer invariants will hold with reasonable applica-
tion logic.2 For our photo-sharing example, I1 holds because
like with strict serializability, PO-serializable services appear
to execute transactions sequentially.
On the other hand, I2 does not hold because PO seri-

alizability is not composable. A worker seeing a photo in
the message queue does not ensure its subsequent reads to
the key-value store will include the writes of a preceding
add-new-photo transaction because the message queue and
key-value store are distinct services.

2.6 Non-Transactional Consistency Models

Our discussion above focuses on transactional consistency
models. The same tension between application invariants
and service performance exists for the equivalent non-
transactional models. Linearizability [36] and sequential
consistency [44] are the non-transactional equivalents of
strict serializability and process-ordered serializability, re-
spectively. If we temporarily ignore albums and assume ap-
plication processes issue a single write to add a photo, in-
variant I2 holds with a linearizable key-value store but not
with a sequentially consistent one. But linearizable services
must employ mechanisms that hurt their performance to
satisfy linearizability’s constraints, for example, by requiring
additional rounds of communication for reads (ğ7).

3 Regular Sequential Consistency Models

A consistencymodel’s guarantees affect both application pro-
grammers and users. Stronger models place less burden on
programmers (by guaranteeing more invariants) and users
(by exposing fewer anomalies) but constrain service per-
formance. In this work, we propose two new consistency

2We say łreasonable application logic” because one can always write a

middleware layer that implements a stronger consistency model, 𝑋 , atop

a weaker one, 𝑌 , e.g., by taking the ideas of bolt-on consistency [11] to

an extreme. But the resulting 𝑋 middleware on 𝑌 service is simply an

inefficient implementation of an 𝑋 service.
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models, regular sequential serializability (RSS) and regular
sequential consistency (RSC), to diminish this trade-off.
RSS and RSC are invariant-equivalent to strict serializ-

ability and linearizability, respectively. Thus, they place no
additional burden on application programmers.

While they do allow more anomalies, prior work suggests
anomalies with much weaker models (e.g., eventual consis-
tency) are rare in practice (e.g., at most six anomalies per
million operations [57]). Thus, we expect the additional bur-
den on users to be negligible.
In this section, we define RSS and RSC and prove their

invariant-equivalence to strict serializability and lineariz-
ability. We first describe our formal model of distributed
applications (ğ3.1) and the services they use (ğ3.2). We then
define RSS and RSC (ğ3.3 and ğ3.4) and finally prove our
main result (ğ3.5). (We demonstrate RSS and RSC allow for
services with better performance in later sections.)

3.1 Applications and Executions

We model a distributed application as a collection of 𝑛 pro-

cesses. Processes are state machines [59, 60] that implement
application logic by performing local computation, exchang-
ing messages, and invoking operations on services.
An application’s processes define a prefix-closed set of

executions, which are sequences 𝑠0, 𝜋1, 𝑠1, . . . of alternating
states and actions, starting and ending with a state. An ap-
plication state contains the state of each processÐit is an
𝑛-length vector of process states. As part of a process’s state,
we assume it has access to a local clock, which it can use to
set local timers, but the clock makes no guarantees about its
drift or skew relative to those at other processes.
Each action is a step taken by exactly one process and is

one of three types: internal, input, or output. Internal actions
model local computation. Processes use input and output
actions to interact with other processes (e.g., receiving and
replying to a remote procedure call) and their environment
(e.g., responding to a user gesture). As we will describe in the
following section, a subset of the input and output actions
are invocations and responses, respectively, which are used
to interact with services.
Processes can also exchange messages with one another

via unidirectional channels. To send a message to process 𝑃 𝑗 ,
𝑃𝑖 uses two actions: first, 𝑃𝑖 uses an output action sendto𝑖 𝑗 (𝑚)
and later, an input action sent𝑖 𝑗 occurs, indicating𝑚’s trans-
mission on the network. Similarly, to receive a message from
𝑃𝑖 , 𝑃 𝑗 first uses an output action recvfrom𝑖 𝑗 and later, an input

action received𝑖 𝑗 (𝑚) occurs, indicating the receipt of𝑚.
Given an execution 𝛼 , we will often refer to an individual

process’s sub-execution, denoted 𝛼 |𝑃𝑖 . 𝛼 |𝑃𝑖 comprises only
𝑃𝑖 ’s actions and the 𝑖th component of each state in 𝛼 .

Well-formed. An execution is well-formed if it satisfies the
following: (1) Messages are sent before they are received; (2)
A process has at most one (total) outstanding invocation (at a
service) or recvfrom𝑖 𝑗 (at a channel); and (3) Processes do not

take output steps while waiting for a response from a service.
We henceforth only consider well-formed executions.

Equivalence. Two executions 𝛼 and 𝛽 are equivalent if for
all 𝑃𝑖 , 𝛼 |𝑃𝑖 = 𝛽 |𝑃𝑖 . Intuitively, equivalent executions are
indistinguishable to the processes.

3.2 Services

Databases, message queues, and other back-end services that
application processes interact with are defined by their op-
erations and a specification [36, 59]. An operation comprises
pairs of invocations, specifying the operations and their argu-
ments, andmatching responses, containing return values. The
specification is a prefix-closed set of sequences of invocation-
response pairs defining the service’s correct behavior in the
absence of concurrency. A sequence 𝑆 in specification 𝔖

defines a total order over its operations, denoted <𝑆 .
Several services can be composed into a composite service

by combining their specifications as the set of all interleav-
ings of the original services’ specifications. Notably, this
means a service composed of constituent services that sup-
port transactions include those transactional operations but
does not support transactions across its constituent services.
In the results below, we assume the processes interact with
an arbitrary (possibly composite) service.

3.3 Consistency Models

A consistency model specifies the possible responses a service
may return in the face of concurrent operations. Before we
define our new consistency models, we must define four
preliminaries. For ease of presentation, two of our definitions,
conflicts and reads-from, assume a key-value store interface.
While these definitions could be made general, we leave
precisely defining them for other interfaces to future work.

Complete operations. Given an execution 𝛼 , we say an op-
eration is complete if its invocation has a matching response
in 𝛼 . We denote complete(𝛼) as the maximal subsequence of
𝛼 comprising only complete operations [36].

Conflicting operations. Given read-write transaction𝑊 ,
we say a read-only transaction 𝑅 conflicts with𝑊 if𝑊 writes
a key that 𝑅 reads. Given an execution 𝛼 , we denote the
set of read-only transactions in 𝛼 that conflict with𝑊 as
C𝛼 (𝑊 ). We define conflicts and C𝛼 (𝑤) analogously for non-
transactional reads and writes.

Real-time order. Two actions in an execution 𝛼 are ordered
in real time [36, 74], denoted 𝜋1 →𝛼 𝜋2, if and only if 𝜋1 is a
response, 𝜋2 is an invocation, and 𝜋1 precedes 𝜋2 in 𝛼 .

Causal order. Two actions are causally related [5, 7, 43, 44,
53, 54] in an execution 𝛼 , denoted 𝜋1 ⇝𝛼 𝜋2 if any of the
following hold: (1) Process order: 𝜋1 precedes 𝜋2 in a process’s
sub-execution; (2) Message passing: 𝜋1 is a sendto𝑖 𝑗 (𝑚) and
𝜋2 is its corresponding received𝑖 𝑗 (𝑚); (3) Reads from: 𝜋1 is
operation 𝑜1’s response, 𝜋2 is 𝑜2’s invocation, and 𝑜2 reads
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a value written by 𝑜1; or (4) Transitivity: there exists some
action 𝜋3 such that 𝜋1 ⇝𝛼 𝜋3 and 𝜋3 ⇝𝛼 𝜋2.

3.4 RSS and RSC

We now define our new consistency models, regular sequen-
tial serializability and regular sequential consistency. Their
definitions are nearly identical but because supporting trans-
actions has significant practical implications, we distinguish
between the transactional and non-transactional versions.

Intuitively, RSS (RSC) guarantees a total order of transac-
tions (operations) such that they respect causality. Further,
like prior łregular” models [45, 80, 90], reads must return
a value at least as recent as the most recently completed,
conflicting write.

Regular Sequential Serializability. Let T be the set of
all transactions and W ⊆ T be the set of read-write
transactions. An execution 𝛼1 satisfies RSS if it can be ex-
tended to 𝛼2 by adding zero or more responses such that
there exists a sequence 𝑆 ∈ 𝔖 where (1) 𝑆 is equivalent
to complete(𝛼2); (2) for all pairs of transactions 𝑇1,𝑇2 ∈ T ,
𝑇1 ⇝𝛼1

𝑇2 =⇒ 𝑇1 <𝑆 𝑇2; and (3) for all read-write
transactions𝑊 ∈ W and transactions 𝑇 ∈ C𝛼1

(𝑊 ) ∪ W,
𝑊 →𝛼1

𝑇 =⇒ 𝑊 <𝑆 𝑇 .

Regular Sequential Consistency. Let O be the set of all
operations andW ⊆ O be the set of writes. An execution
𝛼1 satisfies RSC if it can be extended to 𝛼2 by adding zero
or more responses such that there exists a sequence 𝑆 ∈ 𝔖
where (1) 𝑆 is equivalent to complete(𝛼2); (2) for all pairs
of operations 𝑜1, 𝑜2 ∈ O, 𝑜1 ⇝𝛼1

𝑜2 =⇒ 𝑜1 <𝑆 𝑜2; and
(3) for all writes 𝑤 ∈ W and operations 𝑜 ∈ C𝛼1

(𝑤) ∪W,
𝑤 →𝛼1

𝑜 =⇒ 𝑤 <𝑆 𝑜 .

3.5 RSS and RSC Maintain Application Invariants

This section presents a condensed version of the proof. For
brevity, we assume here processes do not fail and all opera-
tions finish. The full proof is in our technical report [35].

Preliminaries. The results below reason about an applica-
tion’s invariants, which are assertions about its states. For-
mally, we say a state is reachable in application 𝐴 if it is
the final state of some execution of 𝐴. An invariant IA is a
predicate that is true for all of 𝐴’s reachable states [59].
In the proofs below, it will be convenient to focus on

the actions within an execution. Given an execution 𝛼 , its
schedule, sched(𝛼), is the subsequence of just its actions.

Proof intuition.Our main results follows from two observa-
tions. First, Lemma 1 shows we can transform an execution
in which the operations respect RSS into an execution in
which they respect strict serializability without reordering
any actions at any of the processes. Figure 2 shows an exam-
ple. The key insight is that both RSS and strict serializability
guarantee equivalence to a sequence in the service’s speci-
fication, which by definition is strictly serializable. Second,
Theorem 2 shows that the final states of the two executions

S = r1,w1,r2

P1

P2

P3

r2(x=1)

r1(x=0)

w1(x=1)

P1

P2

P3

r2

w1

r1

Figure 2. Example transformation from an RSS execution to
a strictly serializable one. Lemma 1 proves such a transfor-
mation is possible with any RSS execution.

related by Lemma 1 are identical. It follows that invariants
that hold in the first execution also hold in the second.

Lemma 1. Suppose 𝛼 is an execution of application 𝐴 that

satisfies RSS. Then there is an equivalent execution 𝛽 of 𝐴 that

satisfies strict serializability.

Proof. The proof proceeds in two steps. First, we construct
a schedule 𝛽 ′ from 𝛼 ’s schedule 𝛼 ′ without reordering any
actions at any of the processes. Second, we construct the
execution 𝛽 from 𝛽 ′ by inserting the states.
Step 1. Since 𝛼 satisfies RSS, there exists a sequence 𝑆 ∈

𝔖 such that <𝑆 respects⇝𝛼 and thus⇝𝛼′ . To get 𝛽 ′, we
reorder 𝛼 ′ such that each action is ordered after the maximal
(as defined by <𝑆 ) invocation or response action that causally
precedes it. To do so, we define three relations.
First, let 𝜋1 ≺ 𝜋2 if there is some invocation or response

𝜋3 that causally precedes 𝜋2 and that is strictly greater (by
<𝑆 ) than all invocations and responses that causally precede
𝜋1. Second, let 𝜋1 ≡ 𝜋2 if 𝜋1 ⊀ 𝜋2 and 𝜋2 ⊀ 𝜋1. Third, let <𝛼′

be the total order of actions defined by 𝛼 ′. Then 𝛽 ′ is the
schedule found by ordering the actions such that 𝜋1 <𝛽′ 𝜋2
if and only if 𝜋1 ≺ 𝜋2 or 𝜋1 ≡ 𝜋2 and 𝜋1 <𝛼′ 𝜋2.
We show 𝛼 ′ |𝑃𝑖 = 𝛽 ′ |𝑃𝑖 for all 𝑃𝑖 by contradiction, so as-

sume some pair of actions 𝜋1, 𝜋2 from the same 𝑃𝑖 were
reordered in 𝛽 ′. Without loss of generality, assume 𝜋2 is or-
dered before 𝜋1 in 𝛼

′ but the reverse is true in 𝛽 ′. It is clear
that 𝜋1 . 𝜋2 because otherwise 𝜋1 and 𝜋2 would be ordered
identically in 𝛼 ′ and 𝛽 ′. Thus, it must be that 𝜋1 ≺ 𝜋2.

Since 𝜋1 ≺ 𝜋2, there must be some invocation or response
𝜋3 that causally precedes 𝜋2 and is greater than those that
causally precede 𝜋1. But since 𝜋1 and 𝜋2 are from the same
process and 𝜋2 <𝛼′ 𝜋1 by assumption, 𝜋3 ⇝𝛼′ 𝜋1 by the tran-
sitivity of⇝𝛼′ , contradicting the strictness in the definition
of 𝜋3. Thus, 𝛼

′ must be equivalent to 𝛽 ′.
Step 2. To get the execution 𝛽 from 𝛽 ′, we must define the

processes’ states. Since the order of each process’s actions is
the same in 𝛼 ′ and 𝛽 ′, each process will proceed through the
same sequence of states. Thus, we can construct 𝛽’s states
from the sequences of each process’s states in 𝛼 .
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To conclude, we show that 𝛽 satisfies the stated properties.
Since 𝛼 ′ |𝑃𝑖 = 𝛽

′ |𝑃𝑖 for all 𝑃𝑖 , it is clear that 𝛼 is equivalent to
𝛽 . Further, because we only reordered the states and actions
in 𝛼 to get 𝛽 , 𝛽 is clearly finite, and because⇝𝛼 captures
the sending and receiving of messages, 𝛽 is well-formed. Fi-
nally, since 𝑆 is a sequence of matching invocation-response
pairs, the processes’ interactions with the service in 𝛽 are
sequential, not overlapping in real time. Thus, 𝛽 satisfies
strict serializability. ■

Theorem 2. Suppose IA is an invariant that holds for any

execution 𝛽 of 𝐴 that satisfies strict serializability. Then IA
also holds for any execution 𝛼 of 𝐴 that satisfies RSS.

Proof. Let 𝛼 be an arbitrary execution of 𝐴 that satisfies RSS.
We must show that IA is true for the final state 𝑠 of 𝛼 .

By Lemma 1, there is an equivalent execution 𝛽 that satis-
fies strict serializability. Let 𝑠 ′ be the final state of 𝛽 . Because
𝛼 |𝑃𝑖 = 𝛽 |𝑃𝑖 for all 𝑃𝑖 , it is easy to see that 𝑠 ′ = 𝑠 . By assump-
tion, IA is true of 𝑠 ′, so IA is also true of 𝑠 . ■

We prove similar results for RSC and linearizability in our
technical report [35].

4 Practical Implications

Lemma 1 shows we can transform any RSS execution into
an equivalent strictly serializable one. Theorem 2 shows this
is sufficient for RSS to maintain application invariants.
While this transformation preserves the order of each

process’s actions, however, the order of causally unrelated
actions, e.g., the order of Alice and Bob’s Web requests han-
dled by different servers, may not be. In fact, this is why
anomalies like A2 and A3 are possible with RSS and RSC.

Further, RSS (RSC) is defined with respect to a potentially
composite service. The results above thus assume a set of
distinct services can together guarantee RSS (RSC), even if
processes interact with multiple services, but they do not
specify how this is achieved.
In the remainder of this section, we first describe how

multiple services can be composed such that their compo-
sition guarantees RSS (ğ4.1). We then discuss supporting
applications whose processes interact via message passing
(ğ4.2). For ease of exposition, the discussion focuses on RSS
but applies equally to RSC.

4.1 Composing RSS Services

A set of RSS services must always ensure the values returned
by their transactions reflect a global total order spanning
all services. This is straightforward with strictly serializable
services because real-time order is universal across services.
With RSS, however, some pairs of transactions, such as

causally unrelated read-only transactions, may be reordered
with respect to real time. As a result, the states observed by
processes as they interact with multiple services can form
cycles (e.g., 𝑃1 reads 𝑥 = 1 then 𝑦 = 0 while 𝑃2 reads 𝑦 = 1

Function Description

RegisterService(name, fence_f) Register new service.

UnregisterService(name) Unregister service.

StartTransaction(name) Start txn at service.

Figure 3. libRSS Interface. libRSS helps RSS service
builders implement composition by invoking the necessary
real-time fences.

then 𝑥 = 0), precluding a total order. Service builders thus
must implement one additional mechanism, real-time fences,
to allow a set of RSS services to globally guarantee RSS.
A real-time fence 𝑓𝑥 at RSS service 𝑥 provides the fol-

lowing guarantee: for each pair of transactions 𝑇1 and 𝑇2 at
service 𝑥 , if𝑇1 ⇝ 𝑓𝑥 and 𝑓𝑥 → 𝑇2, then𝑇1 <𝑆𝑥 𝑇2, where <𝑆𝑥

is the total order of 𝑥 ’s transactions. Every transaction that
causally precedes the fence must be serialized before any
transaction that follows the fence in real time. Intuitively, a
process that issues a real-time fence ensures all other pro-
cesses observe state that is at least as new as the state it
observed. Thus, if each process issues a fence at its previous
service before interacting with another, the fences prevent
cycles in the states observed by multiple processes as they
cross service boundaries. (We discuss the service-specific
implementation of real-time fences for Spanner-RSS and
Gryff-RSC in Sections 5 and 7.)

Although the need to implement a fence for each RSS ser-
vice places an additional burden on service builders, using
real-time fences to guarantee a global total order across ser-
vices does not require changes to applications. The client
libraries of the RSS services can insert real-time fences as
necessary at run time. To this end, we implement a meta-
library, libRSS, to aid service builders with composition.
Figure 3 shows its interface.
At initialization, an RSS service’s client library registers

itself with the libRSSmeta-library, passing it a unique name
and a callback that implements its fence. The meta-library
keeps an in-memory registry of all RSS services. During
execution, the client library must simply notify the meta-
library before starting a new transaction.
With these calls, the meta-library implements composi-

tion without intervention from application programmers. Ev-
ery time an RSS client starts a transaction, the meta-library
checks if the transaction is at the same service as the previous
one, if any. If not, libRSS invokes the prior service’s fence.
In our technical report [35], we prove that if each service’s
real-time fence provides the guarantee described above and
libRSS follows this simple protocol, then the composition
of a set of RSS services globally guarantees RSS.

4.2 Capturing Causality

A meta-library that issues real-time fences is sufficient to
guarantee RSS for applications whose processes interact
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solely through a set of RSS services. But for those whose pro-
cesses also interact through message passing, an RSS service
must ensure causality is respected across these interactions.
For instance, recall our photo-sharing application and

assume Alice is using her browser, which sends requests to
Web servers that interact with an RSS key-value store. If
one server reads and transmits a photo to Alice’s browser
and the browser subsequently reads the same photo via a
second server, the key-value store must ensure causality
is respected across the two transactionsÐthe second must
not return null. But if the store is unaware of the causal
constraint between the two read-only transactions, then this
may not be guaranteed.

One approach is to require application processes to issue a
fence before such out-of-band interactions. For instance, the
Web server must issue one before transmitting the response
back to Alice’s browser. Depending on the structure of the
application, however, this may be inefficient.
A better approach is to use a context propagation frame-

work [61] to pass metadata between the interacting pro-
cesses. This would ensure the second Web server has the
necessary metadata to convey causality before it interacts
with the RSS store. This context must also include the name
of the last RSS service the process interacted with, so libRSS
can correctly implement composition.

5 Spanner-RSS

Spanner is a globally distributed, transactional database [22].
It uses synchronized clocks to guarantee strict serializabil-
ity [74]. While Spanner is designed to provide low-latency
read-only (RO) transactions most of the time, they may block,
increasing tail latency significantly. Such increases in the
tail latency of low-level services can translate into increases
in common-case, user-visible latency [24].

Our variant of Spanner’s protocol, Spanner-RSS, improves
tail latency for RO transactions by relaxing the constraints
on read-only transactions in accordance with RSS. (We prove
it provides RSS in our technical report [35].)

Spanner background. Spanner is a multi-versioned key-
value store. Keys are split across many shards, and shards
are replicated usingMulti-Paxos [46]. Clients atomically read
and write keys at multiple shards using transactions.
Spanner’s read-write (RW) transactions use two-phase

locking [15] and a variant of two-phase commit [34]. Each
shard’s Paxos leader serves as a participant or coordinator.
Further, using its TrueTime API, Spanner gives each transac-
tion a commit timestamp that is guaranteed to be between
the transaction’s real start and end times.
During execution, clients acquire read locks and buffer

writes. To commit, the client chooses a coordinator and sends
its writes to the shards. Each participant then does the fol-
lowing: (1) ensures the transaction still holds its read locks,
(2) acquires write locks, (3) chooses a prepare timestamp,

CW

CR1

SC

SP

CR2

tc = 10

tread = 12

tp = 8

tee = 20

Figure 4. Example execution where Spanner-RSS’s RO trans-
action returns before Spanner’s. (Replication is omitted.)
Client𝐶𝑊 is committing writes to two shards, 𝑆𝐶 and 𝑆𝑃 ; 𝑆𝐶
is the coordinator. 𝐶𝑅1 reads 𝐶𝑊 ’s writes before 𝐶𝑊 ’s trans-
action finishes. Strict serializability still mandates𝐶𝑅2’s read
also includes them. Conversely, with Spanner-RSS, 𝐶𝑅2’s
read returns immediately (shown by blue dotted line).

(4) replicates the prepare success, and (5) notifies the coor-
dinator. Assuming all participants succeed, the coordinator
finishes similarly: It checks read locks, acquires write locks,
chooses the transaction’s commit timestamp, and replicates
the commit success. Finally, the coordinator releases its locks
and sends the outcome to the client and participants.

To guarantee strict serializability, each participant ensures
its prepare timestamp is greater than the timestamps of any
previously committed or prepared transactions. The coor-
dinator chooses the commit timestamp similarly but also
ensures it is greater than the transaction’s start time and
greater than or equal to all of the prepare timestamps. Com-
bined with commit wait [22], this ensures the transaction’s
commit timestamp is between its start and end times.

Strict serializability unnecessarily blocks ROs. Many
workloads are dominated by reads [16, 73, 83]. Thus, Span-
ner also includes an optimized RO transaction protocol to
make the majority of transactions as fast as possible. Span-
ner’s RO transactions are strictly serializable but unlike RW
transactions, only require one round trip between a client
and the participant shards. As a result, RO transactions have
significantly lower latency than RW transactions.

RO transactions, however, must sometimes block to ensure
strict serializability. RO transactions in Spanner read at a
client assigned timestamp 𝑡read = TT.now.latest, which True-
Time guarantees is after 𝑇RO.start. When a read arrives at a
shard with 𝑡read greater than the prepare timestamp of some
conflicting RW transaction𝑇RW, it must block until the shard
learns if 𝑇RW commits at some time 𝑡c or aborts. Otherwise,
𝑇RO risks violating strict serializability: if 𝑡c < 𝑡read because
𝑇RW .end < 𝑇RO.start (𝑡c < 𝑇RW .end < 𝑇RO.start < 𝑡read), then
strict serializability mandates that𝑇RO includes𝑇RW’s writes.
Because they must potentially wait while a RW transaction
executes two-phase commit, blocked RO transactions can
have significantly higher latency.
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Algorithm 1 Spanner-RSS Client

1: state 𝑡min ← 0

2: function Client::ROTransaction(𝐾 )
3: 𝑆 ← ShardLeaders(𝐾)

4: 𝑡read ← TrueTime::Now.Latest

5: send ROCommit(𝐾, 𝑡read, 𝑡min) to all 𝑠 ∈ 𝑆
6: wait receive ROFastReply(𝑃𝑠 ,𝑉𝑠 ) from all 𝑠 ∈ 𝑆
7: 𝑃,𝑉 ←

⋃

𝑠∈𝑆 𝑃𝑠 ,
⋃

𝑠∈𝑆 𝑉𝑠
8: 𝑡snap ← CalculateSnapshotTS(𝐾,𝑉 )

9: while CheckSnapshot(𝑃, 𝑡snap) ≠ COMMIT do

10: wait for ROSlowReply(𝑖, 𝑑, 𝑡c,𝑉
′) from 𝑠 ∈ 𝑆

11: 𝑃,𝑉 ← UpdatePrepared(𝑃,𝑉 , 𝑖, 𝑑, 𝑡c,𝑉
′)

12: 𝑡min ← max
(

𝑡min, 𝑡snap
)

13: return ReadAtTimestamp(𝑉 , 𝑡snap)

14: function Client::CalculateSnapshotTS(𝐾,𝑉 )
15: 𝑡snap ← 0

16: for 𝑘 ∈ 𝐾 do

17: 𝑉 ′← {(𝑡c, 𝑘
′, 𝑣) ∈ 𝑉 : 𝑘 = 𝑘 ′}

18: 𝑡earliest ← min(𝑡c,𝑘′,𝑣) ∈𝑉 ′ 𝑡c
19: 𝑡snap ← max

(

𝑡snap, 𝑡earliest
)

20: return 𝑡snap

21: function Client::CheckSnapshot(𝑃, 𝑡snap)
22: 𝑡 ′p ← min(𝑖,𝑡p) ∈𝑃 𝑡p
23: if 𝑡 ′p ≤ 𝑡snap then 𝑑 ←WAIT else 𝑑 ← COMMIT

24: return 𝑑

One potential optimization to improve RO transaction la-
tency would be to include the earliest client-side end time 𝑡ee
for each RW transaction. Then, RO transactions could avoid
blocking if 𝑡read < 𝑡ee. Unfortunately, strict serializability dis-
allows this optimization because it requires 𝑇RO to observe
𝑇RW even before 𝑡ee if there is some other RO transaction
that finishes before 𝑇RO and includes any of 𝑇RW’s writes.
Figure 4 shows an example. Because 𝐶𝑅1’s read observes

𝐶𝑊 ’s RW transaction at 𝑆𝐶 , strict serializability requires all
future reads at both shards to include 𝐶𝑊 ’s writes. Thus,
𝐶𝑅2’s read must block until 𝐶𝑊 ’s RW transaction commits.

In contrast, RSS allows this optimization.𝐶𝑅1’s transaction
only imposes a constraint on reads that causally follow it, so
𝐶𝑅2’s read may still return an older value.

Spanner-RSS. Spanner-RSS is our variant of Spanner that im-
proves tail RO transaction latency by often avoiding blocking,
even when there are conflicting RW transactions. Intuitively,
a RO transaction can avoid blocking by observing a state
of the database as of some timestamp 𝑡snap that is before its
read timestamp 𝑡read if it can infer the state satisfies regular
sequential serializability.
Observing this state from before 𝑡read is safe under RSS

when three conditions are met: (1) there are no unobserved
writes from a conflicting RW transaction that could have

Algorithm 2 Spanner-RSS Shard

1: state P ←
{(

𝑖, ℓ, 𝑡p, 𝑡ee,𝑊
)

, . . .
}

⊲ Prepared txns
2: state D ← {(𝑡c, 𝑘, 𝑣) , . . .} ⊲ Database
3: function Shard::ROCommitRecv(𝑐, 𝐾, 𝑡read, 𝑡min)
4: wait until 𝑡read ≤ Paxos::MaxWriteTS

5: 𝑃 ←
{

(𝑖, ℓ, 𝑡p, 𝑡ee,𝑊 ) ∈ P | 𝑅 ∩𝑊 ≠ ∅ ∧ 𝑡p ≤ 𝑡read
}

6: 𝐵 ←
{

(𝑖, ℓ, 𝑡p, 𝑡ee,𝑊 ) ∈ 𝑃 | 𝑡p ≤ 𝑡min ∨ 𝑡ee ≤ 𝑡read
}

7: wait until all 𝑝 ∈ 𝐵 commit or abort
8: 𝑉 ← ReadAtTimestamp(D, 𝐾, 𝑡read)

9: 𝑄 ← {(𝑖, 𝑡p) : (𝑖, ℓ, 𝑡p, 𝑡ee,𝑊 ) ∈ 𝑃 \ 𝐵}

10: send ROFastReply(𝑄,𝑉 ) to 𝑐
11: while 𝑃 ≠ ∅ do

12: wait until some 𝑝 ∈ 𝑃 commits or aborts
13: if 𝑝 = (𝑖, ℓ, 𝑡p, 𝑡ee,𝑊 ) commits at 𝑡c then
14: 𝑉 ← ReadAtTimestamp(D, 𝐾 ∩𝑊, 𝑡c)

15: send ROSlowReply(𝑖,COMMIT, 𝑡c,𝑉 ) to 𝑐
16: else

17: send ROSlowReply(𝑖,ABORT, 0, ∅) to 𝑐

18: 𝑃 ← 𝑃 \ {𝑝}

ended before 𝑇RO started; (2) there are no causal constraints
that require 𝑇RO to observe a write at a timestamp later than
𝑡snap; and (3) its results are consistent with a sequential exe-
cution of transactions.

Spanner-RSS ensures each of these conditions are met. To
ensure (1), RW transactions include a client-side earliest end
time 𝑡ee. To ensure (2), RO transactions include a minimum
read time 𝑡min. Finally, to ensure (3), before completing a
RO transaction, clients ensure all returned values reflect
precisely the state of the database at 𝑡snap. Algorithms 1 and 2
show the full protocol.

Estimating, including, and enforcing 𝑡ee for RW transactions.

Each RW transaction includes an earliest client-side end time
𝑡ee. The client estimates 𝑡ee and includes it when it initiates
two-phase commit (not shown). The shards then store 𝑡ee
while the transaction is prepared but not yet committed
or aborted (Alg. 2, line 1). The client later ensures 𝑡ee is
less than the actual client-side end time by waiting until
𝑡ee < TT.now.earliest.

Enforcing a minimum timestamp for RO transactions. Each
RO transaction includes a minimum read timestamp 𝑡min

to ensure it obeys any necessary causal constraints. Each
client tracks this minimum timestamp and updates it after
every transaction to include new constraints. After a RW
transaction, it is set to the transaction’s commit timestamp
(not shown). After a RO transaction, it is set to be at least
the transaction’s snapshot time (Alg. 1, line 12). 𝑡min thus
captures the causal constraints on this RO transaction; it
must observe a state that is at least as recent as its last write
and any writes the client previously observed.
Avoiding blocking on shards with 𝑡ee and 𝑡min. Using 𝑡ee

and 𝑡min, shards can infer when it is safe for a RO transac-
tion to skip observing a prepared-but-not-committed RW
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transaction (Alg. 2, line 6). It is safe unless the prepared trans-
action either must be observed due to a causal constraint
(𝑡p ≤ 𝑡min) or could have ended before the RO transaction
began (𝑡ee ≤ 𝑡read).

Reading at 𝑡snap. Although each shard can now infer when
a RO transaction can safely skip a prepared RW transaction,
the values returned by multiple shards may not necessarily
reflect a complete, consistent snapshot at 𝑡snap. Thus, clients
and shards take four additional steps to ensure a client always
returns a consistent snapshot.
First, as in Spanner, a shard waits to process a RO trans-

action until its Paxos safe time is greater than 𝑡read (Alg. 2,
line 4) [22]. As a result, all future Paxos writes, and thus
all future RW prepare timestamps, will be larger than 𝑡read.
Thus, the shard ensures it is returning information that is
valid until at least 𝑡read. (The Paxos safe time at leaders can
be advanced immediately if it is within the leader’s lease.)
Second, shards include the commit timestamps 𝑡c for the
returned values (Alg. 2, lines 2, 8, and 10). Third, they return
the prepare timestamp 𝑡p for each skipped RW transaction
with 𝑡𝑝 ≤ 𝑡read (Alg. 2, lines 9-10). (Because writes use locks,
there is at most one per key.) Fourth, when a skipped RW
transaction commits, a shard sends the commit timestamp
and the written values in a slow path (Alg. 2, lines 13-15).
Before returning, the client examines the commit and

prepare timestamps to see if the shards returned values that
are all valid at some snapshot time. Specifically, it sets 𝑡snap
to the earliest time for which it has a value for all keys (Alg. 1,
lines 15-20). Then, it sees if any prepared transactions have
timestamps less than 𝑡snap (Alg. 1, lines 22-23). If they all
prepared after 𝑡snap, the RO transaction returns immediately
(Alg. 1, line 13).

If some transaction prepared before 𝑡snap, however, the
client must wait for slow replies from the shards (Alg. 1, lines
9-10). As the client learns of commits and aborts through the
slow replies, it moves transactions out of the prepared set
(Alg. 1, line 11), updates the values it will return (if 𝑡c ≤ 𝑡snap),
and potentially advances the earliest prepared timestamp
(Alg. 1, line 22). Note that 𝑡snap remains the same, so the latter
continues until 𝑡snap < 𝑡 ′p, which is guaranteed by the time
the final slow reply is received.
Performance discussion. Spanner-RSS’s RO transaction la-

tency is never worse and often better than Spanner’s. When
there are no conflicting RW transactions, RO transactions
in both will return consistent results at 𝑡read. When there
are conflicting transactions, however, Spanner-RSS will of-
ten send fast replies quickly while Spanner blocks. Further,
the fast replies let Spanner-RSS complete the RO transac-
tion right away unless one of the shards returns a value
with a commit timestamp that is greater than the prepared
timestamp of a skipped RW transaction. Even then, the slow
replies from Spanner-RSS’s shards will be sent at the same
time Spanner would unblock.

5.1 Real-Time Fences

As described above, to ensure the order of transactions re-
flects causality, a client tracks and enforces a minimum read
timestamp 𝑡min. Using 𝑡min, a client ensures its next trans-
action will be ordered after any transaction that causally
precedes it by ensuring the next transaction reflects a state
of the database that is at least as recent as 𝑡min.

A real-time fence must provide a slightly stronger guaran-
tee. It must ensure that all transactions that causally precede
it are serialized before any transaction that follows it in
real time, regardless of the latter transaction’s originating
client. While this is guaranteed for future RW transactions
since they already respect their real-time order, the same
is not true of future RO transactions. Thus, when executed
at a client with a minimum read timestamp 𝑡min, a fence in
Spanner-RSS must ensure that all future RO transactions
reflect a state that is at least as recent 𝑡min.
To achieve this, Spanner-RSS’s real-time fences leverage

the following observation: If 𝐿 is the maximum difference
between 𝑡c and 𝑡ee for any RW transaction, then a RO trans-
action that starts after 𝑡c +𝐿 will reflect all writes with times-
tamps less than or equal to 𝑡c. After 𝑡c + 𝐿, a RO transaction
cannot skip reading a RW transaction with commit times-
tamp 𝑡c (since 𝑡ee ≤ 𝑡c + 𝐿 < 𝑡read).
As a result, fences in Spanner-RSS are simple. To ensure

all future RO transactions reflect a state that is at least as
recent as 𝑡min, a fence blocks until 𝑡min + 𝐿 < TT.now.earliest.

6 Spanner-RSS Evaluation

Our evaluation of Spanner-RSS aims to answer two ques-
tions: Does Spanner-RSS improve tail latency for read-only
transactions (ğ6.1), and what performance overhead does
Spanner-RSS’s read-only transaction protocol impose (ğ6.2)?

We implement the Spanner and Spanner-RSS protocols in
C++ using TAPIR’s experimental framework [94, 95]. Each
shard is single-threaded. The implementation reuses TAPIR’s
implementation of view-stamped replication [71] instead of
Multi-Paxos [46] but is otherwise faithful. Our code and
experiment scripts are available online [3].
The implementation includes two optimizations not pre-

sented in Section 5: First, a skipped, prepared transaction’s
writes are returned in the fast path instead of the slow path,
allowing the client to return faster in some cases, e.g., if it
learns the transaction already committed at a different shard.
Second, when a transaction blocks as part of wound-

wait [78], it estimates how long it blocked and advances
its local estimate of 𝑡ee by that amount. The coordinator then
aggregates the shards’ 𝑡ee values and returns the maximum
to the client, which waits until it has passed. This reduces the
chance a RO transaction will be blocked by a RW transaction
whose 𝑡ee has become inaccurate because of lock contention.

Unless otherwise specified, experiments ran on Amazon’s
EC2 platform [1]. Each t2.large instance has 2 vCPUS and
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(b) 0.7 skew.
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(c) 0.9 skew.

Figure 5. Spanner-RSS offers better tail latency for RO transactions on Retwis. In contrast to Spanner’s, its RO transactions
can often avoid blocking when there are concurrent, conflicting RW transactions.

8GB RAM.We use three shards with three replicas each. One
shard leader is in each of California, Virginia, and Ireland,
and the replicas are in the other two data centers. The round
trip times are as follows: CA-VA is 62ms, CA-IR is 136ms,
and VA-IR is 68ms. Our emulated TrueTime error is 10ms,
the p99.9 value observed in practice [22].

To calculate 𝑡ee for RW transactions, clients use the round-
trip latencies above. In our implementation, clients use them
to calculate, for each set of participants, the coordinator
choice that yields the minimum commit latency. It stores
these choices and the commit latencies, and the latter is used
to calculate 𝑡ee. To avoid increasing RW latency, the round-
trip latencies above are the minimum observed, and clients
calculate 𝑡ee with respect to TT.now.earliest.

Each client executes the Retwis workload [47] over a data-
base of ten million keys and values. Retwis clients execute
transactions in the following proportions: 5% add-user, 15%
follow/unfollow, 30% post-tweet, and 50% load-timeline. The
first three are RW transactions, and the last is RO. We gener-
ate keys according to a Zipfian distribution [37] with skews
ranging from 0.5 to 0.9. Such read-write ratios and skews are
representative of real workloads [19, 92].

Unless otherwise specified, we generate load with a fixed
number of partly open clients [79]. Partly open clients use
three parameters to model user behavior: sessions arrive at
rate 𝜆 according to a Poisson process; after each transaction
in a session, the client chooses to stay with probability 𝑝 ; and
if it does, it waits for a think time𝐻 . The clients use a separate
𝑡min for each session. We set 𝐻 = 0 since this yields the
worst performance for Spanner-RSS. Further, we set 𝑝 = 0.9,
so the average session length is ten transactions, matching
measurements from real deployments [83]. Finally, for each
workload, we set 𝜆 such that the offered load is 70-80% of
the maximum throughput. Each data center contributes an
equal fraction of the load.

6.1 Spanner-RSS Reduces RO Tail Latency

We first compare the latency distributions for RO and RW
transactions with Spanner and Spanner-RSS as skew varies.
Spanner-RSS’s RO transactions have lower latency than

Spanner’s due to less blocking during conflicting RW trans-
actions. These improvements do not harm RW transaction
latency because Spanner-RSS’s protocol simply requires pass-
ing around an extra timestamp with RW transactions.
Figure 5 compares the tail latency distributions of RO

transactions at three skews. (We omit the distributions for
RW transactions after verifying they are identical.) Spanner-
RSS improves RO tail latency in all cases. When contention
is low (Figure 5a), Spanner’s RO transactions offer low tail
latency; up to p99, their latency is bounded only bywide-area
latency. Above this, however, it starts increasing. At p99.9,
Spanner-RSS offers a 14% (38ms) reduction in tail latency.

Spanner-RSS offers larger improvements at higher skews.
In Figure 5b, latency consistently decreases by at least 76ms

above p99.5. This is up to a 45% reduction; at p99.9, it is a
37% (114ms) reduction.

With a skew of 0.9, (Figure 5c), Spanner’s RO transaction
latency starts increasing at lower percentiles. As a result,
Spanner-RSS reduces p99 RO latency by 49% (135ms). With
high contention, however, improvements farther out on the
tail (e.g., above p99.95) are more inconsistent. Increased wait-
ing by RW transactions for wound-wait [78] make the earli-
est end time estimates less accurate. Further, each session’s
𝑡min advances more rapidly and in turn, increases the chance
a RO transaction must block.

6.2 Spanner-RSS Imposes Little Overhead

We now compare the two protocol under heavy load to quan-
tify the overhead Spanner-RSS incurs from its additional
protocol complexity. Because the number and size of its addi-
tional messages is small, Spanner-RSS’s performance should
be comparable to Spanner’s.

To stress the implementations, we use a uniformworkload,
set the TrueTime error to zero, and place all shards in one
data center. Since it does not depend on wide-area latencies,
we ran this experiment on CloudLab’s Utah platform [26].
Each m510 machines has 8 physical cores, 64GB RAM, and
a 10Gbit NIC. Inter-data-center latency is less than 200 µs.
We use eight shards, so each leader has a dedicated physical
CPU on one server.
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Figure 6. Spanner-RSS does not significantly impact Span-
ner’s performance at high load.

Figure 6 compares the throughput and median latency as
we increase the number of closed-loop clients. As shown,
Spanner-RSS does not significantly impact the server’s max-
imum throughput. Spanner-RSS’s is within a few hundreds
of transactions per second of Spanner’s, and its latency is
within a few milliseconds.

7 Gryff-RSC

Gryff is a geo-replicated key-value store that supports non-
transactional reads, writes, and atomic read-modify-writes
(rmws) [18]. It provides linearizability using a hybrid shared
register and consensus protocol. Reads and writes are exe-
cuted using a shared register protocol to provide bounded
tail latency whereas rmws are executed using a consensus
protocol, which is necessary for correctness.

We introduce Gryff-RSC, which provides regular sequen-
tial consistency and is able to reduce the bound on tail la-
tency from two round trips to a quorum of replicas to one
round trip. This section gives an overview of Gryff-RSC’s
design and evaluation. We describe the full design and prove
it guarantees RSC in our technical report [35].

7.1 Gryff-RSC Design Overview

Read operations in Gryff consist of an initial read phase that
contacts a quorum of replicas to learn of the most-recent
value they know of for a given key. If the quorum returns the
same values, then the read finishes. If the quorum returns
different values, however, the read continues to a second,
write-back phase that writes the most-recent value to a quo-
rum before the read ends. This second phase is necessitated
by linearizability: once this read ends, any future reads must
observe this or a newer value.

Regular sequential consistency relaxes this constraint: be-
fore the write finishes, only causally later reads must ob-
serve this or a newer value. This enables Gryff-RSC’s reads
to always complete in one phase. On a read, instead of im-
mediately writing the observed value back to a quorum, a
Gryff-RSC client piggybacks it onto the first phase of its
next operation. Replicas write the piggybacked value before
processing the next operation. Causally later operations by
the same client are thus guaranteed to see this or a newer

value. By transitivity then, causally later operations at other
clients, e.g., by the reads-from relation, will also observe this
or a newer value.
Piggybacking a read’s second phase onto the next opera-

tion ensures a client’s next operation can be serialized after
all operations that causally precede it. Similarly, a real-time
fence must ensure all future operations, including those from
other clients, are ordered after any operation that causally
precedes it. By RSC, future writes and rmws are already re-
quired to respect their real-time order, but the same is not
true of future reads. Thus, to execute a real-time fence in
Gryff-RSC, a client writes back the key-value pair, if any,
that would have been piggybacked onto its next operation.
This guarantees future reads return values that are at least
as recent as any operation that causally precedes the fence.

7.2 Gryff-RSC Evaluation

Our evaluation of Gryff-RSC aims to answer two questions:
Does Gryff-RSC offer better tail read latency on important
workloads (ğ7.3), and what are the performance costs of
Gryff-RSC’s protocol (ğ7.4)?
We implement Gryff-RSC in Go using the same frame-

work as Gryff [18], and our code and experiment scripts are
available online [2]. We keep all of Gryff’s optimizations
enabled. All experiments ran on the CloudLab [26] machines
described in Section 6.2, and we emulate a wide-area environ-
ment. We use five replicas, one in each emulated geographic
region, because with Gryff’s optimizations, reads already
always finish in one round trip with three replicas. An equal
fraction of the clients are in each region. Table 2 shows the
emulated round-trip times.

CA VA IR OR JP

CA 0.2

VA 72.0 0.2

IR 151.0 88.0 0.2

OR 59.0 93.0 145.0 0.2

JP 113.0 162.0 220.0 121.0 0.2

Table 2. Emulated round-trip latencies (in ms).

We generate load with 16 closed-loop clients. With this
number, servers are moderately loaded. Each client executes
the YCSBworkload [21], which includes just reads andwrites.
We vary the rate of conflicts and the read-write ratio.

7.3 Gryff-RSC Reduces Read Tail Latency

Figure 7 compares Gryff and Gryff-RSC’s p99 read latency
across a range of conflict percentages and read-write ratios.
We omit similar plots for writes because write performance
is identical in the two systems.
With few conflicts (Figure 7a), nearly all of Gryff’s reads

complete in one round, so Gryff-RSC cannot offer an im-
provement. p99 latency for both systems is 145ms.
As Figures 7b and 7c show, however, as the rate of con-

flicts increases, more of Gryff’s reads must take its slow path,
incurring two wide-area round trips. This increases Gryff’s
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Figure 7. For moderate- and high-contention workloads, Gryff-RSC offers roughly a 40% reduction in p99 read latency
compared to Gryff. As the conflict ratio increases, Gryff-RSC’s benefits start at lower write ratios.

p99 latency by 61% (from 145ms to 234ms). On the other
hand, Gryff-RSC’s reads only require one round trip, so p99
latency remains at 145ms. At lower write ratios, the magni-
tude of Gryff-RSC’s improvement over Gryff increases with
the rate of conflicts.
Further, because reads always finish in one round, Gryff-

RSC offers even larger latency improvements farther out on
the tail (not shown). For instance, with 10% conflicts and a
0.3 write ratio, Gryff-RSC reduces p99.9 latency by 49% (from
290ms to 147ms).

7.4 Gryff-RSC Imposes Negligible Overhead

We also quantify the performance overhead of Gryff-RSC’s
piggybacking mechanism, but we omit the plots due to space
constraints. We compare Gryff and Gryff-RSC’s throughput
and median latency as we increase the number of clients.
As in Section 6.2, we disable wide-area emulation. With
a 10% conflict ratio, we run two workloads: 50% reads-50%
writes and 95% reads-5% writes (matching YCSB-A and YCSB-
B [21]). In both cases, Gryff-RSC’s throughput and latency
are within 1% of Gryff’s, suggesting the overhead from Gryff-
RSC’s protocol changes are negligible.

8 Related Work

This section discusses related work on consistency models,
explicitly reasoning about invariants, equivalence results,
and strictly serializable and linearizable services.

Consistency models. Due to their implications for applica-
tions and services, consistency models have been studied
extensively. In general, given an application, more invariants
hold and fewer anomalies are possible with stronger models.
But weaker models allow for better-performing services.
RSS and RSC are distinct from prior works because they

are the first models that are invariant-equivalent to strict
serializability and linearizability, respectively. They achieve
this by guaranteeing that transactions (operations) appear
to execute sequentially, in an order consistent with a set of
causal constraints. Prior works are not invariant-equivalent
to strict serializability (linearizability) because either they

do not guarantee equivalence to a sequential execution or
do not capture all of the necessary causal constraints.
The discussion below generally proceeds from the

strongest to the weakest consistency models. Since we have
already discussed strict serializability [74], process-ordered
serializability [23, 55], linearizability [36], and sequential
consistency [44] extensively, we focus here on other models.
(We also provide a technical comparison between RSS, RSC,
and their proximal models in our technical report [35].)

Like RSS, CockroachDB’s consistency model (CRDB) [85]
lies between strict serializability and PO serializability. CRDB
guarantees conflicting transactions respect their real-time
order [85], but it gives no such guarantee for non-conflicting
transactions, which can lead to invariant violations. For in-
stance, in a slight modification to our photo-sharing applica-
tion, assume clients issue a single write to add a photo and
included in this write is a logical timestamp comprising a
user ID and a counter. Further, assume clients can issue a
RO transaction for a user’s photos. With CRDB, if Alice adds
two photos and those transactions execute at different Web
servers, a RO transaction that is concurrent with both may
only return the second photo. If the application requires a
user’s photos to always appear in timestamp order, then it
would be correct with a strictly serializable database but not
with CRDB.

Similarly, like RSC, OSC(U) [48] lies between linearizabil-
ity and sequential consistency. OSC(U) guarantees writes
respect their real-time order. Reads, however, may return
stale values [48], so some pairs of reads (e.g., those invoked
by different processes that also communicate via message
passing) may return values inconsistent with their causal or-
der. As a result, the non-transactional version of I2 discussed
in Section 2.6 does not hold with OSC(U). On the other hand,
OSC(U) allows services to achieve much lower read latency
than what is currently achievable with RSC.

PO serializability and sequential consistency impose fun-
damental performance constraints on services [52], so many
weaker models, both transactional [4, 7, 10, 14, 27, 65, 74, 75,
84, 88] and non-transactional [5, 13, 20, 52, 54, 81, 86], have
been developed. These weaker models allow for services
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with much better performance than what is currently achiev-
able with RSS or RSC. For example, a causal+ storage system
can process all operations without synchronous, cross-data-
center communication [54]. But application invariants break
with thesemodels because they do not guarantee equivalence
to a sequential execution of either transactions or operations.
Thus, they present developers with a harsh trade-off between
service performance and application correctness.

Based on the observation that some invariants hold with
weaker consistency models, other work proposes combi-
nations of weak and strong guarantees for different oper-
ations [42, 50, 51, 87]. This allows these services to offer
dramatically better performance for a subset of operations.
Maintaining application correctness while using these ser-
vices, however, requires application programmers to choose
the correct consistency for each operation.
Finally, three other works use causal or real-time con-

straints in innovative ways [12, 62, 93]. First, Δ-causal mes-
saging applies real-time guarantees to a different domain
where messages have limited, time-bounded relevance (e.g.,
video streaming) [12]. Second, real-time causal strengthens
causal consistency by ensuring writes respect their real-time
order [62]. But because real-time causal does not capture all
necessary causal constraints, I2 would not hold.
Third, TACT gives application developers fine-grained

control over its consistency [93]. For instance, an application
can set a different staleness bound for each invocation to
control how old (in real time) the values returned by the op-
eration may be. (Setting zero for all operations provides strict
serializability.) Compared to RSS, TACT’s fine-grained con-
trol allows for services with better performance but requires
developers to choose the correct bounds when ensuring their
application’s correctness.

Reasoning about explicit invariants. Several tools and
techniques have been proposed for reasoning about the cor-
rectness of applications that run on services with weaker
consistency [8, 17, 33, 49, 69, 76]. For example, SIEVE [49]
uses static and dynamic analysis of Java application code
to determine the necessary consistency level for operations
to maintain a set of explicitly written invariants. Brutschy
et al. [17] describe a static analysis tool for identifying non-
serializable application behaviors that are possible when
running on a causally consistent service. Gotsman et al. [33]
introduce a proof rule (and accompanying static analysis
tool [69]) that enables modular reasoning about the consis-
tency level required to maintain explicit invariants.

These tools and techniques help application programmers
ensure explicit invariants hold when using services with
weaker consistency. In contrast, RSS (RSC) services ensure
the same application invariants as strictly serializable (lin-
earizable) services. This makes it easier to build correct appli-
cations because programmers can write code without stating
invariants, running static analyses, or writing proofs.

Equivalence results.Other works have leveraged the notion
of equivalence, or indistinguishability, to prove interesting
theoretical results [9, 30, 32, 58]. In fact, our results here are
inspired by them. But while we leverage some of their ideas
and techniques, these works apply equivalence to different
ends, e.g., to prove bounds on clock synchronization [58] or
show there are fundamental differences in the performance
permitted by different consistency models [9].

Strictly serializable services. Spanner is a globally dis-
tributed, strictly serializable database [22]. Since its pub-
lication, other such services have been developed [41, 63, 67,
68, 77, 85, 89, 91, 94, 95]. These services has largely focused
on improving the throughput [77, 89] and latency [41, 63,
77, 91, 94, 95] of read-write transactions, which can incur
multiple inter-data-center round trips in Spanner.

Because they only require one round trip between a client
and the participant shards, Spanner’s RO transactions con-
tinue to perform as well or better than those of other services.
These improvements are thus orthogonal to those offered
by Spanner-RSS, and in fact, weakening the consistency of
these other services to RSS may allow for designs that com-
bine their improved RW transaction performance with RO
transactions that are competitive with Spanner-RSS’s.

Linearizable services. Gryff is a recent geo-replicated stor-
age system that combines shared registers and consen-
sus [18]. Many other protocols have been developed to pro-
vide replicated and linearizable storage [6, 28, 29, 31, 40, 46,
64, 66, 70ś72, 96]. Weakening the consistency of these other
services to RSC is likely to enable new variants of their de-
signs that improve their performance.

9 Conclusion

Existing consistency models offer a harsh trade-off to appli-
cation programmers; they often must choose between ap-
plication correctness and performance. This paper presents
two new consistency models, regular sequential serializabil-
ity and regular sequential consistency, to ease this trade-off.
RSS and RSC maintain application invariants while permit-
ting new designs that achieve better performance than their
strictly serializable or linearizable counterparts. To this end,
we design variants of two existing systems, Spanner-RSS and
Gryff-RSC, that guarantee RSS and RSC, respectively. Our
evaluation demonstrates significant (40% to 50%) reductions
in tail latency for read-only transactions and reads.
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